Here Come the CECL Models: What Model Validators Need to Know

As it turns out, model validation managers at regional banks didn’t get much time to contemplate what they would do with all their newly discovered free time. Passage of the Economic Growth, Regulatory Relief, and Consumer Protection Act appears to have relieved many model validators of the annual DFAST burden. But as one class of… ShareTweetShare+1

Applying Machine Learning to Conventional Model Validations

In addition to transforming the way in which financial institutions approach predictive modeling, machine learning techniques are beginning to find their way into how model validators assess conventional, non-machine-learning predictive models. While the array of standard statistical techniques available for validating predictive models remains impressive, the advent of machine learning technology has opened new avenues… ShareTweetShare+1

Applying Model Validation Principles to Machine Learning Models

Machine learning models pose a unique set of challenges to model validators. While exponential increases in the availability of data, computational power, and algorithmic sophistication in recent years has enabled banks and other firms to increasingly derive actionable insights from machine learning methods, the significant complexity of these systems introduces new dimensions of risk. When… ShareTweetShare+1

Machine Learning Detects Model Validation Blind Spots

Machine learning represents the next frontier in model validation—particularly in the credit and prepayment modeling arena. Financial institutions employ numerous models to make predictions relating to MBS performance. Validating these models by assessing their predictions is of paramount importance, but even models that appear to perform well based upon summary statistics can have subsets of...ShareTweetShare+1

Data Management

Why Model Validation Does Not Eliminate Spreadsheet Risk

Model risk managers invest considerable time in determining which spreadsheets qualify as models, which are end-user computing (EUC) applications, and which are neither. Seldom, however, do model risk managers consider the question of whether a spreadsheet is the appropriate tool for the task at hand. Perhaps they should start. Buried in the middle of page… ShareTweetShare+1

AML Models: Applying Model Validation Principles to Non-Models

Anti-money-laundering (AML) solutions have no business being classified as models. To be sure, AML “models” are sophisticated, complex, and vitally important. But it requires a rather expansive interpretation of the OCC/Federal Reserve/FDIC1 definition of the term model to realistically apply the term to AML solutions. Supervisory guidance defines model as “a quantitative method, system, or… ShareTweetShare+1

Validating Interest Rate Models

Validating short-rate models can be challenging because many different ways of modeling how interest rates change over time (“interest rate dynamics”) have been created over the years. Each approach has advantages and shortcomings, and it is critical to distinguish the limitations and advantages of each of them  to understand whether the short-rate model being used is appropriate to the task. This can be accomplished via the basic tenets of model validation—evaluation of conceptual soundness, replication, benchmarking, and outcomes analysis. Applying these concepts to short-rate models, however, poses some unique complications. ShareTweetShare+1

AML Model Validation: Effective Process Verification Requires Thorough Documentation

Increasing regulatory scrutiny due to the catastrophic risk associated with anti-money-laundering (AML) non-compliance is prompting many banks to tighten up their approach to AML model validation. Because AML applications would be better classified as highly specialized, complex systems of algorithms and business rules than as “models,” applying model validation techniques to them presents some unique challenges that make documentation especially important. ShareTweetShare+1

Mitigating EUC Risk Using Model Validation Principles

The challenge associated with simply gauging the risk associated with “end user computing” applications (EUCs) let alone managing it—is both alarming and overwhelming. Scanning tools designed to detect EUCs can routinely turn up tens of thousands of potential files, even at not especially large financial institutions. Despite the risks inherent in using EUCs for mission-critical calculations, EUCs are prevalent in nearly any institution due to their ease of use and wide-ranging functionality. ShareTweetShare+1

Balancing Internal and External Model Validation Resources

The question of “build versus buy” is every bit as applicable and challenging to model validation departments as it is to other areas of a financial institution. With no “one-size-fits-all” solution, banks are frequently faced with a balancing act between the use of internal and external model validation resources. This article is a guide for deciding between staffing a fully independent internal model validation department, outsourcing the entire operation, or a combination of the two.  ShareTweetShare+1