Get Started
Articles Tagged with: Mortgage & Structured Finance Markets

RiskSpan Named to Inaugural STORM50 Ranking by Chartis Research – Winner of “A.I. Innovation in Capital Markets”

Chartis Research has named RiskSpan to its Inaugural “STORM50” Ranking of leading risk and analytics providers. The STORM report “focuses on the computational infrastructure and algorithmic efficiency of the vast array of technology tools used across the financial services industry” and identifies industry-leading vendors that excel in the delivery of Statistical Techniques, Optimization frameworks, and Risk Models of all types. 

RiskSpan’s flagship Edge Platform was a natural fit for the designation because of its positioning squarely at the nexus of statistical behavioral modeling (specifically around mortgage credit and prepayment risk) and functionality enabling users to optimize trading and asset management strategies.  Being named the winner of the “A.I. Innovation in Capital Markets” solutions category reflects the work of RiskSpan’s vibrant innovation lab, which includes researching and developing machine learning solutions to structured finance challenges. These solutions include mining a growing trove of alternative/unstructured data sources, anomaly detection in loan-level and other datasets, and natural language processing for constructing deal cash flow models from legal documents.

Learn more about the Edge Platform or contact us to discuss ways we might help you modernize and improve your mortgage and structured finance data and analytics challenges. 

The NRI: An Emerging Tool for Quantifying Climate Risk in Mortgage Credit

Climate change is affecting investment across virtually every sector in a growing number of mostly secondary ways. Its impact on mortgage credit investors, however, is beginning to be felt more directly.

Mortgage credit investors are investors in housing. Because housing is subject to climate risk and borrowers whose houses are destroyed by natural disasters are unlikely to continue paying their mortgages, credit investors have a vested interest in quantifying the risk of these disasters.

To this end, RiskSpan is engaged in leveraging the National Risk Index (NRI) to assess the natural disaster and climate risk exposure of mortgage portfolios.

This post introduces the NRI data in the context of mortgage portfolio analysis (loans or mortgage-backed securities), including what the data contain and key considerations when putting together an analysis. A future post will outline an approach for integrating this data into a framework for scenario analysis that combines this data with traditional mortgage credit models.

The National Risk Index

The National Risk Index (NRI) was released in October 2020 through a collaboration led by FEMA. It provides a wealth of new geographically specific data on natural hazard risks across the country. The index and its underlying data were designed to help local governments and emergency planners to better understand these risks and to plan and prepare for the future.

The NRI provides information on both the frequency and severity of natural risk events. The level of detailed underlying data it provides is astounding. The NRI focuses on 18 natural risks (discussed below) and provides detailed underlying components for each. The severity of an event is broken out by damage to buildings, agriculture, and loss of life. This breakdown lets us focus on the severity of events relative to buildings. While the definition of building here includes all types of real estate—houses, commercial, rental, etc.—having the breakdown provides an extra level of granularity to help inform our analysis of mortgages.

The key fields that provide important information for a mortgage portfolio analysis are bulleted below. The NRI provides these data points for each of the 18 natural hazards and each geography they include in their analysis.

  • Annualized Event Frequency
  • Exposure to Buildings: Total dollar amount of exposed buildings
  • Historical Loss Ratio for Buildings (Bayesian methods to derive this estimate, such that every geography is covered for its relevant risks)
  • Expected Annual Loss for Buildings
  • Population estimates (helpful for geography weighting)

Grouping Natural Disaster Risks for Mortgage Analysis

The NRI data covers 18 natural hazards, which pose varying degrees of risk to housing. We have found the framework below to be helpful when considering which risks to include in an analysis. We group the 18 risks along two axes:

1) The extent to which an event is impacted by climate change, and

2) An event’s potential to completely destroy a home.

Earthquakes, for example, have significant destructive potential, but climate change is not a major contributor to earthquakes. Conversely, heat waves and droughts wrought by climate change generally do not pose significant risk to housing structures.

When assessing climate risk, RiskSpan typically focuses on the five natural hazard risks in the top right quadrant below.

Immediate Event Risk versus Cumulative Event Risk

Two related but distinct risks inform climate risk analysis.

  1. Immediate Event Analysis: The risk of mortgage delinquency and default resulting directly from a natural disaster eventhome severely damaged or destroyed by a hurricane, for example.  
  2. Cumulative Event Risk: Less direct than immediate event risk, this is the risk of widespread home price declines across an entire area communities because of increasing natural hazard risk brought on by climate changeThese secondary effects include: 
    • Heightened homebuyer awareness or perception of increasing natural hazard risk,
    • Property insurance premium increases or areas becoming ‘self-insured, 
    • Government policy impacts (e.g., potential flood zone remapping), and 
    • Potential policy changes related to insurance from key players in the mortgage market (i.e., Fannie Mae, Freddie Mac, FHFA, etc.). 

NRI data provides an indication of the probability of immediate event occurrence and its historic severity in terms of property losses. We can also empirically observe historical mortgage performance in the wake of previous natural disaster events. Data covering several hurricane and wildfire events are available.

Cumulative event risk is less observable. A few academic papers attempt to tease out these impacts, but the risk of broader home price declines typically needs to be incorporated into a risk assessment framework through transparent scenario overlays. Examples of such scenarios include home price declines of as much as 20% in newly flood-exposed areas of South Florida. There is also research suggesting that there are often long term impacts to consumer credit following a natural disaster 

Geography Normalization

Linking to the NRI is simple when detailed loan pool geographic data are available. Analysts can merge by census tract or county code. Census tract is the more geographically granular measure and provides a more detailed analysis.

For many capital markets participants, however, that level of geographic specific detail is not available. At best, an investor may have a 5-digit or 3-digit zip code. Zip codes do not directly match to a given county or census tract and can potentially span across those distinctions.

There is no perfect way to perform the data link when zip code is the only available geographic marker. We take an approach that leverages the other data on housing stock by census tract to weight mortgage portfolio data when multiple census tracts map to a zip code.

Other Data Limitations

The loss information available represents a simple historical average loss rate given an event. But hurricanes (and hurricane seasons) are not all created equal. The same is true of other natural disasters. Relying on averages may work over long time horizons but could significantly underpredict or overpredict loss in a particular year. Further, the frequency of events is rising so that what used to be considered 100 year event may be closer to a 10 or 20 year event. Lacking data about what losses might look like under extreme scenarios makes modeling such events problematic.

The data also make it difficult to take correlation into account. Hurricanes and coastal flooding are independent events in the dataset but are obviously highly correlated with one another. The impact of a large storm on one geographic area is likely to be correlated with that of nearby areas (such as when a hurricane makes its way up the Eastern Seaboard).

The workarounds for these limitations have limitations of their own. But one solution involves designing transparent assumptions and scenarios related to the probability, severity, and correlation of stress events. We can model outlier events by assuming that losses for a particular peril follow a normal distribution with set standard deviations. Other assumptions can be made about correlations between perils and geographies. Using these assumptions, stress scenarios can be derived by picking a particular percentile along the loss distribution.

A Promising New Credit Analysis Tool for Mortgages

Notwithstanding its limitations, the new NRI data is a rich source of information that can be leveraged to help augment credit risk analysis of mortgage and mortgage-backed security portfolios. The data holds great promise as a starting point (and perhaps more) for risk teams starting to put together climate risk and other ESG analysis frameworks.

Nearly $8 Trillion in Senior Home Equity Pushes Reverse Mortgage Market Index Upward

The NRMLA/RiskSpan Reverse Mortgage Market Index (RMMI) rose to 280.99 during the third quarter of 2020, an all-time high. This reflects a 1.6% increase in senior home equity, which now stands at an estimated $7.82 trillion. Growth in senior homeowner’s wealth was largely attributable to an estimated 1.6% (or $149 billion) increase in senior housing value, offset by 1.6% (or $28 billion) increase of senior-held mortgage debt.

The National Reverse Mortgage Lenders Association (NRMLA) and RiskSpan have published the Reverse Mortgage Market Index (RMMI) since the beginning of 2000. The RMMI provides a trending measure of home equity among U.S. homeowners age 62 and older.

The RMMI defines senior home equity as the difference between the aggregate value of homes owned and occupied by seniors and the aggregate mortgage balance secured by those homes. This measure enables NRMLA to help gauge the potential market size of those who may be qualified for a reverse mortgage product. The chart above illustrates the steady increase in this index since the end of the 2008 recession.

Increasing house prices drive the index’s upward trend, mitigated to some extent by a corresponding modest increase in mortgage debt held by seniors. The most recent RMMI report (reflecting data as of the end of Q3 20202) was published last week on NRMLA’s website.

Note on the Limitations of RMMI

To calculate the RMMI, an econometric tool is developed to estimate senior housing value, senior mortgage level, and senior equity using data gathered from various public resources such as American Community Survey (ACS), Federal Reserve Flow of Funds (Z.1), and FHFA housing price indexes (HPI). The RMMI is simply the senior equity level at time of measure relative to that of the base quarter in 2000.[1]  The main limitation of RMMI is non-consecutive data, such as census population. We use a smoothing approach to estimate data in between the observable periods and continue to look for ways to improve our methodology and find more robust data to improve the precision of the results. Until then, the RMMI and its relative metrics (values, mortgages, home equities) are best analyzed at a trending macro level, rather than at more granular levels, such as MSA.



[1] There was a change in RMMI methodology in Q3 2015 mainly to calibrate senior homeowner population and senior housing values observed in 2013 American Community Survey (ACS).

Advanced Technologies Offer an Escape Route for Structured Products When Crises Hit

A Chartis Whitepaper in Collaboration with RiskSpan

COVID-19 has highlighted how financial firms’ technology infrastructures and capabilities are often poorly designed for unexpected events – but lessons are being learned. The ongoing revolution in risk-management technology can help firms address their immediate issues in times of crisis.

By taking the steps we outline here, firms can start to position themselves at the leading edge of portfolio and risk management when such events do occur.

Where Would We Be Without the Mortgage Market?

It’s bleak out there. Can you imagine how much bleaker it would be if the U.S. mortgage market weren’t doing its thing to prop up the economy?

The mortgage market is helping healthy borrowers take advantage of lower interest rates to improve their personal balance sheets. And it is helping struggling borrowers by offering generous loss mitigation options. 

The mortgage market plays a unique role in the U.S. economy. It is a hybrid consortium of originators, guarantors, investors, and policymakers intent on offering competitive rates in a transparent market structure—a structure that is the beneficiary of both good government policy and a robust, competitive private marketplace. 

The mortgage market’s pro-cyclical role in the U.S. economy allocates credit and interest rate risk among borrowers, investors and the federal government. When the government’s interest rates go down, so do mortgage rates.

March 2020

COVID-19 turned the world’s economies on their heads. Once strong growing economies ground to a stop. By mid-March, the negative effect of the pandemic in the U.S. was clear, with sharply rising unemployment claims and a declining Q1 GDP. COVID-19 did not spare the mortgage market. Fear of borrower defaults led to a freezing up of the credit market, which in turn fueled anxiety among mortgage servicers, guarantors, investors, and originators.

The U.S. government and Federal Reserve responded quickly. Applying lessons learned from the 2008, they initiated housing relief programs early. Congress immediately passed legislation enabling forbearance and eviction protection programs to borrowers and renters. The Federal Reserve promptly cut interest rates to near zero while using its balance sheet to quell market concerns and ensure liquidity.

The FHFA’s Credit Risk Transfer program worked as intended, sharing with willing investors the credit risk uncertainty and, in due course, the resulting credit losses. By April, the mortgage market’s guarantors—Ginnie Mae, Fannie Mae and Freddie Mac—imposed P&I advance programs on servicers and investors, thus ensuring the continuation of the mortgage servicing market.

Rallying the Troops

Boy, it was a tough spring for the industry. But now all the pieces were in place:

  1. New legislation to aid borrowers
  2. Lower rates and market liquidity from the Fed
  3. P&I advance solutions and underwriting guidance from the Agencies

The U.S. mortgage market was finally in a position to play its role in steadying the economy. Mortgages help the economy by lowering debt burden ratios and increasing available spendable income and investible assets. Both of these conditions contribute to the stabilization and recovery of the economy. 

This relief is provided through:

  • Rate-and-term refinances, which lower borrowers’ monthly mortgage payments,
  • Purchase loans, which help borrowers capitalize on low interest rates to buy new houses, and
  • Cash-out refinances, which enable borrowers to convert home equity into spendable and investable cash.

Mortgage origination volume in 2020 is now projected to reach $2.8 trillion—a 30% increase over 2019—despite 11% unemployment and more than 4 million loans in forbearance.

But near-term issues remain

It would be a misstatement to say all things are great for the U.S. mortgage market. While mortgage rates are at 50-year lows, they are not as low as they could be. The dramatic increase in volume has forced originators to raise rates in order to manage their production surges. Mortgage servicing rights values have plunged on new originations, which also leads to higher borrower rates. In other words, a good portion of the pro-cyclical benefit of lower interest rates is not actually making its way into the hands of mortgage borrowers.

In addition, the current high rate of unemployment and forbearance will ultimately come home to roost in the form of elevated default rates as the economy’s recovery from COVID-19 continues to look more U-shaped than the originally hoped for V-shape. Any increases in default rates will certainly be met with new rounds of government intervention. This almost always results in higher costs to servicers.  

Long-term uncertainties

The pandemic continues to wreak havoc on people and economies. Its duration and cumulative impacts are still unknown but are certain to reshape the U.S. mortgage market. Still unanswered are the growing questions around how the following will affect local real estate values, defaults, and future business volumes:

  • The emerging work-from-home economy
  • Permanent employment dislocations from the loss of travel, entertainment, and retail jobs
  • Loss of future rate-and-term refinance business because of today’s low rates
  • Muted future purchase volumes due to high unemployment

Notwithstanding these uncertainties, the U.S. mortgage market will play a vital role in the economy’s rebuilding. Its resiliency and willingness to learn from past mistakes, combined with an activist role of government and its guarantors, not only ensure the market’s long-term viability and success. These qualities also position it as a mooring point for an economy otherwise tossed about in a turbulent storm of uncertainty. 

Webinar: Basics of the Reference Rate Transition


Basics of the Reference Rate Transition

In June 2017, the ARRC announced the Secure Overnight Financing Rate (SOFR) as its recommended alternative rate, replacing LIBOR by the end of 2021.

Learn from RiskSpan experts Tom Pappalardo and Pat Greene the current industry standard for LIBOR, the possible challenges with SOFR, and how to mitigate your risk.

About The Hosts

Tom Pappalardo

Managing Director

Thomas Pappalardo is head of RiskSpan’s Data, Modeling and Analytics Consulting Practice and has 20+ years of broad experience in mortgage technology, finance and operations and retail banking industries. He is an experienced engagement manager, data and business requirements lead, business process and internal controls analyst and financial model validator. At RiskSpan, Tom has led multiple client engagements supporting the development of analytical applications, reengineering of business processes, validation of financial models and development of model risk management policies for the GSE’s (Fannie Mae, Freddie Mac, Federal Home Loan Banks), commercial banks, mortgage banks and non-bank servicers.

Patrick Greene

Senior Managing Director

Patrick Greene currently supports consulting and advisory services provided by RiskSpan for clients implementing securitization activities. In addition, he has delivered technology solutions and provided financial model validation support to multiple RiskSpan clients whose business practices rely on credit models, interest-rate models, prepayment models, income simulation models, counter-party risk models, whole loan valuation models, and bond redemption forecasting models. Pat is an experienced executive who has been responsible for the management of a leading asset securitization program for a national financial institution.

Using RS Edge to Quantify the Impact of The QM Patch Expiration

Using RS Edge Data to Quantify the Impact of the QM Patch Expiration

A 2014 Consumer Financial Protection Bureau (CFPB) rule established that mortgages purchased by the GSEs (Fannie Mae or Freddie Mac) can be considered “qualified” even if their debt-to-income ratio (DTI) exceeds 43 percent. This provision is known as the “qualified mortgage (QM) patch” or sometimes the “GSE patch.” It has become one of the most important holdouts of the Dodd-Frank Act and an important facilitator of U.S. lending activity under looser credit standards. The CFPB implemented the patch to encourage lenders to make loans that do not meet QM requirements, but are still “responsibly underwritten.” Because all GSE loans must pass the strict standards for conforming mortgages, they are presumed to be reasonably underwritten–notwithstanding sometimes having DTI ratios higher than 43 percent.

The QM patch is set to expire on January 10, 2021. This phaseout has spawned concern over the impact both on mortgage originators and potentially on borrowers when the patch is no longer available and GSEs are less apt to purchase loans with higher DTI ratios.[1]

We performed an analysis of GSE loan data housed in RiskSpan’s RS Edge platform to quantify this potential impact.

The Good News:

The slowdown in purchases of high-DTI loans is already occurring, which could partially mitigate the impact of the expiration of the patch.

We used RS Edge to analyze the percentage of QM loans to which the patch applies today. From 2016 through the beginning of 2019, Fannie and Freddie sharply increased their purchases of loans with DTI ratios greater than 43 percent, with these loans accounting for over 34 percent of Fannie’s purchases as recently as February 2019 and over 30 percent of Freddie’s purchases in November 2018 (see Figure 1).

Figure 1: % of GSE Acquisitions with DTI > 43 (2016 – 2019)


Our data shows, however, that Fannie and Freddie have already begun to wind down purchases of these loans. By the end of 2019, only about 23 percent of GSE loans purchased had DTI greater than 43 percent. This is illustrated more clearly in Figure 2, below.

Figure 2: % of GSE Acquisitions with DTI > 43 (2019 only)


As discussed in the December 2019 Wall Street Journal article “Fannie Mae and Freddie Mac Curb Some Loans as Regulator Reins in Risk,” the wind-down could be related to the GSE’s general efforts to hold stronger portfolios as they aim to climb out of conservatorship. However, our data suggests an equally plausible explanation for the slowdown Borrowers generally exhibit a greater willingness to stretch their incomes to buy a house than to refinance, so purchase loans are more likely than refinancings to feature higher DTI ratios. Figure 3 illustrates this phenomenon.

Figure 3: Most High-DTI Loans Back Home Purchases


The Bad News:

The bad news, of course, is that one-fifth of Freddie and Fannie loans purchased with DTI>43% is still significant. Over 900,000 mortgages purchased by the GSEs in 2019 were of the High-DTI variety, accounting for over $240 billion in UPB.

In theory, these 900,000 borrowers will no longer have a way of being slotted into QM loans after the patch expires next year. While this could be good news for the non-QM market, which would potentially be poised to capture this new business, it may not be the best news for these borrowers, who likely do not fancy paying the higher interest rates generally associated with non-QM lending.

Originators, not relishing the prospect of losing QM protection for these loans, have also expressed concern about the phaseout of the patch. A group of lenders that includes Wells Fargo and Quicken Loans has petitioned the CFPB to completely eliminate the DTI requirements under ability-to-pay rules.

Figure 4: % of DTI>43 Loans Sold to GSEs by Originator


We will be closely monitoring the situation and continuing to offer tools that will help to quantify the potential impact of the expiration.



[1] Consumer Financial Protection Bureau, July 25, 2019.[/vc_column_text][/vc_column][/vc_row]

Fannie Mae and Freddie Mac Launch New Uniform Mortgage-Backed Security (UMBS)

Today, Fannie Mae and Freddie Mac begin issuing the long-awaited Uniform Mortgage-Backed Security (UMBS). The Federal Housing Finance Administration (FHFA) conceived of this new standard in its 2012 “A Strategic Plan for Enterprise Conservatorships,” which marked the start of the Single Security Initiative (the history of which is laid out in the graphic below). 

RiskSpan produces FHFA’s quarterly performance reports, most recently published Wednesday, May 29, which will support the agency’s oversight of the UMBS. The FHFA uses this report to monitor prepayment performance of passthroughs issued by Fannie and Freddie. These reports provide market participants with additional transparency on prepayment behavior alignment. They also allow the FHFA to monitor and address differences in conditional prepayments rates (CPR) between the two issuers and to align programs, policies, and practices that affect the cash flows of “To-Be-Announced” (TBA)-eligible Mortgage-Backed Securities (MBS). 

 The importance of RiskSpan’s contributions to the FHFA’s efforts are highlighted in Bloomberg’s May 30 article, “A $4 Trillion Plan Could Make or Break Dreams of U.S. Homebuyers”.

Low MI No Problem: Analyzing the Historical Performance of Home Affordable Loans

Introduction In our last CRT Deal Monitor post, we touched on a trend we have noticed- that the number of loans being originated with less-than-standard MI coverage has been increasing. This is a trend we will be covering in a series of blog posts. The following analysis provides a historical view of the performance of loans with less than standard MI coverage, like those being originated through the Fannie Mae HomeReady and Freddie Mac HomePossible programs. Fannie Mae CAS Deals contain a steadily growing percent of UPB in the HomeReady program. While Freddie Mac does not currently include a HomePossible indicator we suspect the same trend is occurring. In the coming months Freddie Mac will add this disclosure enhancement and we will investigate. Historical data indicates that these HomeReady loans perform just as well, if not better, than similar loans not in an affordability program (see appendix for the cohort definitions). However, this trend appears to be shifting as newer vintages with standard MI have experienced less (albeit slightly) losses than their HomeReady counterparts, though there is significantly less performance history available. The table below shows the cumulative default rate for each vintage segmented by LTV cutoffs for the HomeReady Program. Analysis The plots below present a profile of Fannie Mae HomeReady and Standard MI cohorts via the distributions of UPB, LTV, FICO, and DTI dating back to 1999. The cohorts are similar, though the Standard MI cohort does present a slightly better credit profile. The Standard MI cohort contains more loans with <= 95% LTV, slightly higher FICOs, slightly lower DTIs, and higher average loan sizes. All plots in this post are interactive:

  • Click and drag in any of the plots to zoom on a region.
  • Isolate groups by double clicking on the legend entries, and single click to add groups back in.

Cohort Characteristics Plots: To compare performance through time each cohort has been grouped by Vintage. The plot below shows the cumulative default rate based on months from origination for each Vintage MI cohort. Based on the data, the older HomeReady population has experienced a lower overall default rate vs. the same vintage with Standard MI. This effect is exaggerated for vintages originated immediately preceding the crisis and is observed consistently through 2011. Unsurprisingly, since the Low MI cohorts experienced a lower overall default rate, they also experienced a lower cumulative net loss which is displayed for each vintage on hover. Select a single vintage from the dropdown menu or isolate vintage(s) by clicking the lines or legend. Cumulative Default Rate Plot: Since the HomeReady population is characterized by having less than standard MI, we should expect this population to have a higher loss severity. This relationship is seen in the data and is most prominent from the 2005 vintage onward. With the exception of the 2011 vintage, the gap between severity for Low and Standard MI has grown stronger through time. Cumulative Severity Plot: In the next installment of this series we will cover specific loss characteristics for the HomeReady and Standard MI populations, and discuss the impact of Borrower Area Median Income, which is an eligibility requirement for the HomeReady population. Appendix: Cohort Selection Criteria: For this analysis, the historical performance of two cohorts ‘Low MI’ and ‘Standard MI’ were pulled from RiskSpan’s Edge Platform from the Fannie Mae Loan Performance Dataset. The cohorts contain approximately 800,000 and 2,1M loans respectively. The cohorts were established based on the current MI coverage requirements set by Fannie Mae, and were limited to loans with LTV > 90.1%. The matrix below shows MI coverage requirements for the HomeReady (Low MI) cohort and Standard MI cohort. Cohort 1 – Low MI Coverage: Cohort 2 – Standard MI Coverage:

Fannie Mae’s New CAS REMIC: Why REITs Are Suddenly Interested in CRT Deals

Fannie Mae has been issuing credit-risk-transfer (CRT) deals under its Connecticut Avenue Securities (CAS) program since 2013. The investor base for these securities has traditionally been a diverse group of asset managers, hedge funds, private equity firms, and insurance companies. The deals had been largely ignored by Real Estate Investment Trusts (REITs), however. The following pie charts illustrate the investor breakdown of Fannie Mae’s CAS 2018-C06 deal, issued in October 2018. Note that REITs accounted for only 11 percent of the investor base of the Group 1 and Group 2 M-2 tranches (see note below for information on how credit risk is distributed across tranches), and just 4 percent of the Group 1 B-1 tranche. Things began to change in November 2018, however, when Fannie Mae began to structure CAS offering as notes issued by trusts that qualify as Real Estate Mortgage Investment Conduits (REMICs). The first such REMIC offering, CAS 2018-R07, brought about a substantial shift in the investor distribution, with REITs now accounting for a significantly higher share. As the pie charts below illustrate, REITs now account for some 22 percent of the M-2 tranche investor base and nearly 20 percent of the B-1 tranche. What Could Be Driving This Trend? It seems reasonable to assume that REITs are flocking to more favorable tax treatment of REMIC-based structures. These will now be more simplified and aligned with other mortgage-related securities, as Fannie Mae points out. Additionally, the new CAS REMIC notes meet all the REIT income and asset tests for tax purposes, and there is a removal on tax withholding restrictions for non-U.S. investors in all tranches. The REMIC structure offers additional benefits to REITs and other investors. Unlike previous CAS issues, the CAS REMIC—a bankruptcy-remote trust—issues the securities and receives the cash proceeds from investors. Fannie Mae pays monthly payments to the trust in exchange for credit protection, and the trust is responsible for paying interest to the investors and repaying principal less any credit losses. Since it is this new third-party trustee issuing the CAS REMIC securities, investors will be shielded from exposure to any future counterparty risk with Fannie Mae. The introduction of the REMIC structure represents an exciting development for the CAS program and for CRT securities overall. It makes them more attractive to REITs and offers these and other traditional mortgage investors a new avenue into credit risk previously available only in the private-label market. End Note: How Are CAS Notes Structured? Notes issued prior to 2016 as part of the CAS program are aligned to a structure of six classes of reference tranches, as illustrated below: Two mezzanine tranches of debt are offered for sale to investors. The structure also consists of 4 hypothetical reference tranches, retained by Fannie Mae and used for allocation of cash flows. When credit events occur, write-downs are first applied to the Fannie Mae retained first loss position. Only after the entire first loss position is written down are losses passed on to investors in mezzanine tranche debt – first M2, then M1. Loan prepayment is allocated along an opposite trajectory. As loans prepay, principal is first returned to the investors in M1 notes. Only after the full principal balance of M1 notes have been repaid do M2 note holders receive principal payments. Beginning with the February 2016 CAS issuance (2016-C01), notes follow a new structure of seven classes of reference tranches, as illustrated below: In addition to the two mezzanine tranches, a portion of the bottom layer is also sold to investors. This allows Fannie Mae to transfer a portion of the initial expected loss. When credit events occur, both Fannie Mae and investors incur losses. Additionally, beginning with this issuance, the size of the B tranche was increased to 100 bps, effectively increasing the credit support offered to mezzanine tranches. Beginning with the January 2017 CAS issuance (2017-C01), notes follow a structure of eight classes of reference tranches, as illustrated below: Fannie Mae split the B tranche horizontally into two equal tranches, with Fannie Mae retaining the first loss position. The size of the B1 tranche is 50 bps, and Fannie Mae retains a vertical slice of the B1 tranche.

Get Started