Linkedin    Twitter   Facebook

Get Started
Log In

Linkedin

Articles Tagged with: Agency MBS

Is Your Prepay Analysis Ready for the Rate Cut?

The forthcoming Federal Reserve interest rate cuts loom large in minds of mortgage traders and originators. The only remaining question is by how much rates will be cut. As the economy cools and unemployment rises, recent remarks by the Fed Chair have made the expectation of rate cuts essentially universal, with the market quickly repricing to a 50bp ease in September. This anticipated move by the Fed is already influencing mortgage rates, which have already experienced a notable decline.

Understanding the Lock-in Effect

One of the key factors influencing prepayments in the current environment is the lock-in effect, where borrowers are deterred from selling their current home due to the large difference between their current mortgage rate and prevailing market rates (which they would incur when purchasing their next home). As rates decrease, the gap narrows, reducing the lock-in effect and freeing more borrowers to sell and move.

As Chart 1 illustrates, a significant share of borrowers continues to hold mortgages between 2 and 3 percent. These borrowers clearly still have no incentive to refinance. But historical data suggests that the sizeable lock-in effect, which is currently depressing turnover, diminishes as the magnitude of their out-of-the-moneyness comes down. In other words, even a 100-basis point reduction can significantly increase housing turnover, as borrowers who were previously 300 basis points out of the money move to 200 basis points, making selling their old home and buying a new one, despite the higher interest rate, more palatable.

CHART 1: Distribution of Note Rates for 30-Year Conventional Mortgages: July 2024


Current Market Dynamics

Recent data from Mortgage News Daily indicates that mortgage rates have dropped over the past four weeks from around 6.8% to nearly 6.4%. This decrease is expected to continue, potentially bringing rates below 6% by the end of the year. This will likely have a profound impact on mortgage prepayments, particularly in the Agency MBS market.

Most outstanding mortgages, particularly those in Fannie and Freddie securities, currently have low prepayment speeds, with many loans sitting at 2% to 3% coupons. While a drop in mortgage rates to 6% (or lower) will still leave most of these mortgages out of the money for traditional rate-and-term refinances, it may bring a growing number of them into play for cash-out refinances, given significant home price appreciation and equity buildup over last 4 years. It will also loosen the grip of the lock-in effect for a growing number of homeowners currently paying below-market interest rates.

Implications for Prepayment Speeds

Factoring in the potential increase in turnover and cash-out refis, the impact of rate cuts on prepayment speeds could be substantial. For instance, with a 100-bp drop in rates, loans that are deeply out of the money could see their prepayment speeds increase by 1 to 2 CPR based on the turnover effect alone. Loans that are just at the money or slightly out of the money will see a more pronounced effect, with prepayment speeds potentially doubling. Chart 2, below, illustrates both the huge volume of loans deep out of the money to refinance as well as the small (but significant) uptick in CPR that a 100-bp shift in interest rates can have on CPR even for loans as much as 300 bps out of the money.

CHART 2: CPR by Refinance Incentive (dotted line reflects UPB of each bucket)


Historical data suggests that if mortgage rates move to 6.4%, the volume of loans moving into the money to refinance could increase up to eightfold — from $39 billion to $247 billion (see chart 3, below.) This surge in refinance activity will significantly influence prepays — impacting both turnover and refi volumes.

CHART 3: Volume and CPR by Coupon (dotted line reflects UPB of each bucket)


The Broader Housing Market

Beyond prepayments, the broader housing market may also feel the effects of rate cuts, but perhaps in a nuanced way. A reduction in rates generally improves affordability, potentially sustaining or even increasing home prices despite the increased supply from unlocked homes. However, this dynamic is complex. While lower rates make homes more affordable, the release of previously locked-in homes could counterintuitively depress home prices due to increased supply. With housing affordability at multi-decade lows, an uptick in housing supply could swamp any effect of somewhat lower rates.

While a modest rate cut may primarily boost turnover, a more significant cut could trigger a wave of refinancing. Additionally, cash-out refinances may become more attractive, offering a cheaper alternative to HELOCs and other more expensive options.

Conclusion

The forthcoming Fed interest rate cuts are poised to have a significant impact on mortgage prepayments. As rates decline, the lock-in effect will ease, encouraging more refinancing and increasing prepayment speeds. The broader housing market will also feel the effects, with potential implications for home prices and overall market dynamics. Monitoring these trends closely will be crucial for market participants, particularly those in the agency MBS market, as they navigate the changing landscape.

Contact us to staying informed and prepared and learn more about how RiskSpan can help you make strategic decisions that align with evolving market conditions.


RiskSpan Launches MBS Loan Level Historical Data on Snowflake Marketplace

ARLINGTON, Va., June 18, 2024 – RiskSpan, a leading provider of data analytics and risk management solutions for the mortgage industry, announced today that it has launched MBS Loan Level Historical Data on Snowflake Marketplace. RiskSpan’s MBS Loan Level Historical Data on Snowflake Marketplace enables joint customers to access RiskSpan’s normalized and enriched loan-level data for Fannie Mae, Freddie Mac, and Ginnie Mae mortgage-backed securities.

“We are thrilled to join the Snowflake Marketplace and offer our loan-level MBS data to a wider audience of Snowflake users,” said Janet Jozwik, Senior Managing Director at RiskSpan. “This is a first step in what we believe will ultimately become a cloud-based analytical hub for MBS investors everywhere.”

RiskSpan and Snowflake, the AI Data Cloud company, are working together to help joint customers inform business decisions and drive innovations by enabling them to query the data using SQL, join it with other data sources, and scale up or down as needed. RiskSpan also provides sample code and calculations to help users get started with common metrics such as CPR, aging curves, and S-curves.

“RiskSpan’s launch of a unique blend of enriched data onto Snowflake Marketplace represents a major opportunity for Snowflake customers to unlock new value through data on their business journey,” said Kieran Kennedy, Head of Marketplace at Snowflake. “We welcome RiskSpan to the ecosystem and look forward to exploring how we can support our customers as they look to leverage the breadth of the Snowflake platform more effectively.”

Joint customers can now leverage Loan-Level MBS Data on Snowflake Marketplace, allowing them to access RiskSpan data enhancements, including servicer normalization, refinements, mark-to-market LTV calculations, current coupon. These and other enhancements make it easier and faster for users to perform analysis and modeling.

Snowflake Marketplace is powered by Snowflake’s ground-breaking cross-cloud technology, Snowgrid, allowing companies direct access to raw data products and the ability to leverage data, data services, and applications quickly, securely, and cost-effectively. Snowflake Marketplace simplifies discovery, access, and the commercialization of data products, enabling companies to unlock entirely new revenue streams and extended insights across the AI Data Cloud. To learn more about Snowflake Marketplace and how to find, try and buy the data, data services, and applications needed for innovative business solutions, click here.

About RiskSpan, Inc. 

RiskSpan delivers a single analytics solution for structured finance and private credit investors of any size to confidently make faster, more precise trading and portfolio risk decisions and meet reporting requirements with fewer resources, and less time spent managing multiple vendors and internal solutions. Learn more at www.riskspan.com.


The newest, fastest and easiest way to access and analyze Agency MBS data

TL;DR Summary of Benefits

  • Data normalization and enhancement: RiskSpan’s MBS data on Snowflake normalizes Fannie, Freddie, and Ginnie loan-level data, consolidating everything into one set of field names. It also offers enhanced loan level-data fields, including current coupon, spec pool category, and mark-to-market LTV, which are not available in the raw data from the agencies. The data also includes pool-level factors like pool prefix and pool age, as well as full loan histories not available from the GSEs directly.
  • Data access and querying: Users access the data in Snowflake using SQL or Python connectors. Snowflake functions essentially as a cloud SQL server that allows for instantaneous data sharing across entities. In just a few clicks, users can start analyzing MBS data using their preferred coding language—no data, ETL, or IT Teams required.
  • Data merging and analytics: Users can merge the data in Snowflake with other available loan level or macroeconomic data, including interest rates, home prices, and unemployment, for advanced analytics. Users can also project performance, monitor portfolios, and create spec pools, among other features.

The Problem

Even though Fannie, Freddie and Ginnie have been making MBS performance data publicly available for years, working with the raw data can be challenging for traders and back-office analysts.

Traders and analysts already have many of the tools they need to write powerful queries that can reveal hidden patterns and insights across different markets – patterns that can reveal lucrative trading opportunities based on prepayment analysis. But one big obstacle often stands in the way of getting the most out of these tools: the data from the agencies is large and unwieldy and is not formatted in a consistent way, making it hard to compare and combine.

What’s more, the Agencies do not maintain full history of published data on the websites for download. Only recent history is available.

The Solution: RiskSpan’s new MBS loan-level historical offering on Snowflake Marketplace

Using RiskSpan’s new MBS Loan-Level Historical Data Offering, MBS traders and analysts can now leverage the power of Snowflake, the leading cloud data platform, to perform complex queries and merge data from multiple sources like never before.

This comprehensive data offering provides a fully normalized view of the entire history of loan-level performance data across Agencies – allowing users to interact with the full $9T Agency MBS market in unprecedented ways.

A list of normalized Fannie and Freddie fields can be found at the end of this post.

In addition to being able to easily compare different segments of the market using a single set of standardized data fields, MBS traders and analysts also benefit from derived and enhanced data, such as current coupon, refinance incentive, current loan-to-value ratio, original specified pool designation, and normalized seller and servicer names.

The use cases are practically limitless.

MBS traders and analystscan track historical prepayment speeds, find trading opportunities that offer relative value, and build, improve, or calibrate prepayment models. They can see how prepayment rates vary by loan size, credit score, geographic location, or other factors. They can also identify pools that have faster or slower prepayments than expected and exploit the differences in price.

Loan originators can see how their loans perform compared to similar loans issued by other originators, servicers, or agencies, allowing them to showcase their ability to originate high-quality loans that command premium pricing.

Enhanced fields provide users with more comprehensive insights and analysis capabilities. They include a range of derived and enhanced data attributes beyond the standard dataset: derived fields useful for calculations, additional macroeconomic data, and normalized field names and enumerations. These fields give users the flexibility to customize their analyses by incorporating additional data elements tailored to their specific needs or research objectives.

Enhanced loan-level fields include:

  • Refi Incentive: The extent to which a borrower’s interest rate exceeds current prevailing market rates
  • Spread at Origination (SATO): a representation of the total opportunities for refinancing within a mortgage servicing portfolio. SATO encompasses all potential refinance candidates based on prevailing market conditions, borrower eligibility, and loan characteristics
  • Servicer Normalization: A standardization of servicer names to ensure consistency and accuracy in reporting and analysis
  • Scheduled Balance: A helper field necessary to easily calculate CPR and other performance metrics
  • Spec Pool Type: A designation of the type of spec story on the loan’s pool at origination
  • Current LTV: a walked forward LTV based on FHFA’s HPI and the current balance of the loan

Not available in the raw data from the agencies, these fields allow MBS traders and analysts to seamlessly project loan and pool performance, monitor portfolios, create and evaluate spec pools, and more.

Access the Data on Your Terms

Traders and analysts can access the data in Snowflake using SQL or Python connectors. Alternatively, they can also access the data through the Edge UI, our well-established product for ad hoc querying and visualization. RiskSpan’s Snowflake listing provides sample queries and a data dictionary for reference. Data can be merged with macroeconomic data from other sources – rates, HPI data, unemployment – for deeper insights and analytics.

The listing is available for a 15-day free trial and can be purchased on a monthly or annual basis. Users don’t need to have a Snowflake account to try it out. Learn more and get started at the Snowflake Marketplace or contact us to schedule a demo or discussion.

Fannie/Freddie Normalized Fields

NAMETYPEDESCRIPTION
AGENumberLoan Age in Months
AGENCYVarcharFN [Fannie Mae], FH [Freddie Mac]
ALTDQRESOLUTIONVarcharPayment deferral type: CovidPaymentDeferral,DisasterPaymentDeferral,PaymentDeferral,Other/NA
BORROWERASSISTPLANVarcharType of Assistance: Forbearance, Repayment, TrialPeriod, OtherWorkOut, NoWorkOut, NotApplicable, NotAvailable
BUSINESSDAYSNumberBusiness Day in Factor Period
COMBINEDLTVFloatOriginal Combined LTV
CONTRIBUTIONFloatContribution of Loan to the Pool, to be used to correctly attribution Freddie Mirror Pools
COUPONFloatNet Coupon or NWAC in %
CURRBALANCEFloatCurrent Balance Amount
CURRENTCOUPONFloatPrimary rate in the market (PMMS)
CURRENTLTVFloatCurrent Loan to Value Ratio based on rolled-forward home value calculated by RiskSpan based on FHFA All-Transaction data
CURTAILAMOUNTFloatDollar amount curtailed in the period
DEFERRALAMOUNTFloatDollar amount deferred
DQSTRINGVarcharDelinquency History String, left most field in the current period
DTIFloatDebt to Income Ratio %
FACTORDATEDatePerformance Period
FICONumberBorrower FICO Score [300,850]
FIRSTTIMEBUYERVarcharFirst time home buyer flag Y,N,NA
ISSUEDATEDateLoan Origination Date
LOANPURPOSEVarcharLoan Purpose: REFI,PURCHASE,NA
LTVFloatOriginal Loan to Value Ratio in %
MATURITYDATEDateLoan Maturity Date
MICOVERAGEFloatMortgage Insurance Coverage %
MOSDELINQVarcharDelinquency Status: Current, DQ_30_Day, DQ_60_Day, DQ_90_Day, DQ_120_Day, DQ_150_Day, DQ_180_Day, DQ_210_Day, DQ_240_Day, DQ_270_Day, DQ_300_Day, DQ_330_Day, DQ_360_Day, DQ_390_Day, DQ_420_Day, DQ_450_Day, DQ_480_Day, DQ_510_Day, DQ_540_Day, DQ_570_Day, DQ_600_Day, DQ_630_Day, DQ_660_Day, DQ_690_Day, DQ_720pls_Day
MSAVarcharMetropolitian Statistical Area
NUMBEROFBORROWERSNumberNumber of Borrowers
NUMBEROFUNITSVarcharNumber of Units
OCCUPANCYTYPEVarcharOccupancy Type: NA,INVESTOR,OWNER,SECOND
ORIGBALANCEFloatOriginal Loan Balance
ORIGSPECPOOLTYPEVarcharSpec Story of the pool that the loan is a part of. Please see Spec Pool Logic in our linked documentation
PERCENTDEFERRALFloatPercentage of the loan balance that is deferred
PIWVarcharProperty Inspection Waiver Type: Appraisal,Waiver,OnsiteDataCollection, GSETargetedRefi, Other,NotAvailable
POOLAGENumberAge of the Pool
POOLIDVarcharPool ID


What Do 2024 Origination Trends Mean for MSRs?

While mortgage rates remain stubbornly high by recent historical standards, accurately forecasting MSR performance and valuations requires a thoughtful evaluation of loan characteristics that go beyond the standard “refi incentive” measure.

As we pointed out in 2023, these characteristics are particularly important when it comes to predicting involuntary prepayments.

This post updates our mortgage origination trends for the first quarter of 2024 and takes a look at what they could be telling us.

Average credit scores, which were markedly higher than normal during the pandemic years, have returned and stayed near the averages observed during the latter half of the 2010s.

The most credible explanation for this most recent reversion to the mean is the fact that the Covid years were accompanied by an historically strong refinance market. Refis traditionally have higher FICO scores than purchase mortgages, and this is apparent in the recent trend.

Purchase markets are also associated with higher average LTV ratios than are refi markets, which accounts for their sharp rise during the same period.

Consequently, in 2023 and 2024, with high home prices persisting despite extremely high interest rates, new first-time homebuyers with good credit continue to be approved for loans, but with higher LTV and DTI ratios.

Between rates and home prices, ​​borrowers simply need to borrow more now than they would have just a few years ago to buy a comparable house. This is reflected not just in the average DTI and LTV, but also the average loan size (below) which, unsurprisingly, continues to trend higher as well.

Recent large increases to the conforming loan limit are clearly also contributing to the higher average loan size.

What, then, do these origination trends mean for the MSR market?

The very high rates associated with newer originations clearly translate to higher risk of prepayments. We have seen significant spikes in actual speeds when rates have taken a leg down — even though the loans are still very new. FICO/LTV/DTI trends also potentially portend higher delinquencies down the line, which would negatively impact MSR valuations.

Nevertheless, today’s MSR trading market remains healthy, and demand is starting to catch up with the high supply as more money is being raised and put to work by investors in this space. Supply remains high due to the need for mortgage originators to monetize the value of MSR to balance out the impact from declining originations.

However, the nature of the MSR trade has evolved from the investor’s perspective. When rates were at historic lows for an extended period, the MSR trade was relatively straightforward as there was a broader secular rate play in motion. Now, however, bidders are scrutinizing available deals more closely — evaluating how speeds may differ from historical trends or from what the models would typically forecast.

These more granular reviews are necessarily beginning to focus on how much lower today’s already very low turnover speeds can actually go and the extent of lock-in effects for out-of-the-money loans at differing levels of negative refi incentive. Investors’ differing views on prepays across various pools in the market will often be the determining factor on who wins the bid.

Investor preference may also be driven by the diversity of an investor’s other holdings. Some investors are looking for steady yield on low-WAC MSRs that have very small prepayment risk while other investors are seeking the higher negative convexity risk of higher-WAC MSRs — for example, if their broader portfolio has very limited negative convexity risk.

In sum, investors have remained patient and selective — seeking opportunities that best fit their needs and preferences.

So what else do MSR holders need to focus on that may may impact MSR valuations going forward? 

The impact from changes in HPI is one key area of focus.

While year-over-year HPI remains positive nationally, servicers and other investors really need to look at housing values region by region. The real risk comes in the tails of local home price moves that are often divorced from national trends. 

For example, HPIs in Phoenix, Austin, and Boise (to name three particularly volatile MSAs) behaved quite differently from the nation as a whole as HPIs in these three areas in particular first got a boost from mass in-migration during the pandemic and have since come down to earth.

Geographic concentrations within MSR books will be a key driver of credit events. To that end, we are seeing clients beginning to examine their portfolio concentration as granularly as zipcode level. 

Declining home values will impact most MSR valuation models in two offsetting ways: slower refi speeds will result in higher MSR values, while the increase in defaults will push MSRs back downward. Of these two factors, the slower speeds typically take precedence. In today’s environment of slow speeds driven primarily by turnover, however, lower home prices are going to blunt the impact of speeds, leaving MSR values more exposed to the impact of higher defaults.


Impact of Mr. Cooper’s Cyber Security Incident on Agency Prepayment Reporting

Amid the fallout of the cyberattack against Mr. Cooper on October 31st was an inability on the large servicer’s part to report prepayment activity to investors.

According to Freddie Mac, the incident “resulted in [Mr. Cooper’s] shutting down certain systems as a precautionary measure. As a result, Freddie Mac did not receive loan activity reporting, which includes loan payoffs and payment corrections, from Mr. Cooper during the last few days of the reporting period related to October loan activity.”

Owing to Mr. Cooper’s size, were curious to measure what (if any) impact its missing days of reporting might have on overall agency speeds.

Not a whole lot, it turns out.

This came as little surprise given the very low prepayment environment in which we find ourselves, but we wanted to run the numbers to be sure. Here is what we found.

We do not know precisely how much reporting was missed and assumed “the last few days of the reporting period” to mean 3 days.

Assuming 3 days means that Mr. Cooper’s reported speeds of 4.5 CPR to Freddie and 4.6 CPR to Fannie likely should have been 5.2 CPR and 5.4 CPR, respectively. While these differences are relatively small for to Mr. Cooper’s portfolio (less than 1 CPR) the impact on overall Agency speeds is downright trivial — less than 0.05 CPR.

Fannie MBSFreddie MBS
Sch. Bal.195,221,550,383168,711,346,228
CPR (reported)4.64.5
CPR (estimated*)5.45.2
*assumes three days of unreported loan activity and constant daily prepayments for the month

Fannie Mae and Freddie Mac will distribute scheduled principal and interest when servicers do not report the loan activity. Prepayments that were not reported “will be distributed to MBS certificateholders on the first distribution date that follows our receipt and reconciliation of the required prepayment information from Mr. Cooper.”


What Do 2023 Origination Trends Mean for MSRs?

When it comes to forecasting MSR performance and valuations, much is made of the interest rate environment, and rightly so. But other loan characteristics also play a role, particularly when it comes to predicting involuntary prepayments.

So let’s take a look at what 2023 mortgage originations might be telling us.

Average credit scores, which were markedly higher than normal during the pandemic years, have returned during the first part of 2023 to averages observed during the latter half of the 2010s.

FICO

The most credible explanation for this most recent reversion to the mean is the fact that the Covid years were accompanied by an historically strong refinance market. Refis traditionally have higher FICO scores than purchase mortgages, and this is apparent in the recent trend.

Purchase markets are also associated with higher average LTV ratios than are refi markets, which accounts for their sharp rise during the same period

LTV

Consequently, in 2023, with high home prices persisting despite extremely high interest rates, new first-time homebuyers with good credit continue to be approved for loans, but with higher LTV and DTI ratios.

DTI

Between rates and home prices,​​borrowers simply need to borrow more now than they would have just a few years ago to buy a comparable house. This is reflected not just in the average DTI and LTV, but also the average loan size (below) which, unsurprisingly, is trending higher as well.

Recent large increases to the conforming loan limit are clearly also contributing to the higher average loan size.

WOLS

What, then, do these origination trends mean for the MSR market?

The very high rates associated with newer originations clearly translate to higher risk of prepayments. We have seen significant spikes in actual speeds when rates have taken a leg down — even though the loans are still very new. FICO/LTV/DTI trends also potentially portend higher delinquencies down the line, which would negatively impact MSR valuations.

Nevertheless, today’s MSR trading market remains healthy, and demand is starting to catch up with the high supply as more money is being raised and put to work by investors in this space. Supply remains high due to the need for mortgage originators to monetize the value of MSR to balance out the impact from declining originations.

However, the nature of the MSR trade has evolved from the investor’s perspective. When rates were at historic lows for an extended period, the MSR trade was relatively straightforward as there was a broader secular rate play in motion. Now, however, bidders are scrutinizing available deals more closely — evaluating how speeds may differ from historical trends or from what the models would typically forecast.

These more granular reviews are necessarily beginning to focus on how much lower today’s already very low turnover speeds can actually go and the extent of lock-in effects for out-of-the-money loans at differing levels of negative refi incentive. Investors’ differing views on prepays across various pools in the market will often be the determining factor on who wins the bid.

Investor preference may also be driven by the diversity of an investor’s other holdings. Some investors are looking for steady yield on low-WAC MSRs that have very small prepayment risk while other investors are seeking the higher negative convexity risk of higher-WAC MSRs — for example, if their broader portfolio has very limited negative convexity risk.

In sum, investors have remained patient and selective — seeking opportunities that best fit their needs and preferences.

So what else do MSR holders need to focus on that may may impact MSR valuations going forward? 

The impact from changes in HPI is one key area of focus.

While year-over-year HPI remains positive nationally, servicers and other investors really need to look at housing values region by region. The real risk comes in the tails of local home price moves that are often divorced from national trends. 

For example, HPIs in Phoenix, Austin, and Boise (to name three particularly volatile MSAs) behaved quite differently from the nation as a whole as HPIs in these three areas in particular first got a boost from mass in-migration during the pandemic and have since come down to earth.

Geographic concentrations within MSR books will be a key driver of credit events. To that end, we are seeing clients beginning to examine their portfolio concentration as granularly as zipcode level. 

Declining home values will impact most MSR valuation models in two offsetting ways: slower refi speeds will result in higher MSR values, while the increase in defaults will push MSRs back downward. Of these two factors, the slower speeds typically take precedence. In today’s environment of slow speeds driven primarily by turnover, however, lower home prices are going to blunt the impact of speeds, leaving MSR values more exposed to the impact of higher defaults.


Edge: Zombie Banks

At the market highs, banks gorged themselves on assets, lending and loading their balance sheets in an era of cheap money and robust valuations. As asset prices drop, these same companies find their balance sheets functionally impaired and in some cases insolvent. They are able to stay alive with substantial help from the central bank but require ongoing support. This support and an unhealthy balance sheet preclude them from fulfilling their role in the economy.

We are describing, of course, the situation in Japan in the late 1980s and early 1990s, when banks lent freely, and companies purchased both real estate and equity at the market highs. When the central bank tightened monetary policy and the stock market tanked, many firms became distressed and had to rely on support from the central bank to stay afloat. But with sclerotic balance sheets, they were unable to thrive, leading to the “lost decade” (or two or three) of anemic growth.

While there are substantial parallels between the U.S. today and Japan of three decades ago, there are differences as well. Firstly, the U.S. has a dynamic non-bank sector that can fill typical roles of lending and financial intermediation. And second, much of the bank impairment comes from Agency MBS, which slowly, but surely, will prepay and relieve pressure on their HTM assets.

Chart
Source: The Wall Street Journal

How fast will these passthroughs pay off? It will vary greatly from bank to bank and depends on their mix of passthroughs and their loan rates relative to current market rates, what MBS traders call “refi incentive” or “moniness.” It is helpful to remember that incentive also matters to housing turnover, which is a form of mortgage prepayment. For example, a borrower with a note rate that is 100bp below prevailing rates is much more likely to move to a new house than a borrower with a note rate that is 200bp out of the money, a trait that mortgage practitioners call “lock-in”.

Chart
Source: RiskSpan’s Edge Platform

As a proxy for the aggregate bank’s balance sheet, we look at the universe of conventional and GNMA passthroughs and remove the MBS held by the Federal Reserve.

1

The Fed’s most substantial purchases flowed from their balance sheet expansion during COVID, when mortgage rates were at all-time lows. Consequently, the Fed owns a skew of the MBS market. Two-thirds of the Fed’s position of 30yr MBS have a note rate of 3.25% or lower. In contrast, the market ex Fed has just under 50% of the same note rates.

Chart
Source: RiskSpan’s Edge Platform

From here, we can estimate prepayments on the remaining universe. Prepay estimates from dealers and analytics providers like RiskSpan vary, but generally fall in the 4 to 6 CPR range for out-of-the-money coupons. This, coupled with scheduled principal amortization of roughly 2-3% per annum means that for this level in rates, runoff in HTM MBS should occur around 8% per annum — slow, but not zero. After five years, approximately 1/3 of the MBS should pay off. Naturally, the pace of runoff can change as both mortgage rates and home sales change.

While the current crisis contains echoes of the Japanese zombie bank crisis of the 1990s, there are notable differences. U.S. banks may be hamstrung over the next few years, with reduced capacity to make new loans as MBS in their HTM balance sheets run off over the next few years. But they will run off — slowly but surely.


Quantifying Mortgage Risk — Best Practices in the Wake of SVB

Much has been made of the Silicon Valley Bank saga, from the need for basic risk management (was there any, other than a trivial nod?) to the possibility of re-extending the Dodd-Frank rules to cover all banks. Rather than adding our voice to that noise, this post makes a pitch for best practices in MBS and whole loan risk, regardless of whether existing regulation covers your institution.

“Best practices” in mortgage risk is a broad term meaning different things to different people. For our purposes, it refers to using sophisticated risk management tools to quantify both first- and second-order risk of various factors. It also refers to using scenario analysis to capture projected P/L under combinations of risks, for example twists in the interest rate curve combined with spread changes and changes in implied volatility.

Before these risks can be offset using rate and option hedges, our first step is quantifying what the risks are.

In the simplest case, good risk management analysis should quantify projected P/L of a rate-sensitive mortgage or MBS position for shifts in the rate curve — not just local rate shifts of 25 to 50bp, but much larger shifts in rates. It’s helpful to remember that MBS and their underlying mortgages have embedded calls, which lead to significant changes in both projected durations and projected convexity as rates move. Running scenarios with large rate shifts can help highlight the sizable second-order risks in MBS, which are typically negative but turn positive under large enough shifts. In turn, this extended analysis highlights a non-trivial third-order rate effect in MBS.

In the following chart, we show P/L on a position of TBA passthroughs, securities similar to SVB’s held-to-maturity portfolio. We project price movements under parallel rate shifts as of January 3, 2022, which roughly corresponds to the start of the tightening cycle. For this analysis, we use RiskSpan’s prepayment and interest-rate models, which are available in the Edge interface or via overnight batch.

1

Chart

In this analysis, the model projected prices of FNCL 2.0 to 3.0 within 2.5% of actual observed prices on March 8, 2023, shown by the diamonds on the chart, the Wednesday before the SVB crisis began to unfold. While not exact, this analysis illustrates the power of a straightforward rate curve to help a bank’s risk management team project actual, realized prices over very large rate moves.

In the next chart, we show a P/L chart that is duration-neutral at outset. This chart shows the losses from negative convexity,

2

driven by the homeowner’s option to refinance moving from at-the-money to significantly out-of-the-money. As rates continue to rise (moving right on the chart), underperformance from convexity continues to increase, but only to a point. This is where the homeowner’s call option is offset by the natural, positive convexity of discounting. Beyond that point, MBS become mildly positively convex as the call options become less relevant.

Chart

What does this change in convexity look like? In the final chart, we show convexity at various rate shifts for a par-priced passthrough.

3

This highlights convexity changes over large moves (and a non-trivial third derivative with respect to changes in rates) and underscores the importance of a quantitative approach to risk management for MBS.

Chart

From these straightforward scenarios, banks and other institutions can overlay combinations of other risk shocks, for example curve flatteners and steepeners, OAS changes, and changes in implied volatility. These mixed scenarios can quantify risk from cross-partial derivatives and inform potential hedges under multiple changes in inputs. All these simple and more complex user-defined scenarios are available in RiskSpan’s Edge platform, giving small and mid-sized banks the ability to quantify risk on high-quality MBS, which is the first fundamental in a rigorous risk management framework. Recent events have highlighted the tradeoff between cost savings generated by taking a light approach to rate risk management and the existential risk of insolvency. Yes, small and mid-sized banks can save costs while remaining within the current regulatory framework. But, as SVB has taught us, to do so can be tantamount to unwittingly betting the entire enterprise. Laying out a few basis points to ensure you’ve quantified the interest rate risk properly has never looked like a more worthwhile investment.


Duration Risk: Daily Interest Rate Risk Management and Hedging Now Indispensable

The rapid decline of Silicon Valley Bank and Signature Bank affirms the strong need for daily interest rate risk measurement and hedging. All financial institutions should have well documented management and board limits on these exposures.

Measuring risk on complex mortgage-backed securities and loan portfolios that have embedded prepayment and credit risk is challenging. RiskSpan has a one-stop risk measurement solution for all mortgage-backed securities, structured product, loan and other related assets including data management, proprietary models and risk reporting.

Our bank clients enjoy the benefit of daily risk measurement to ensure they are well-hedged in this volatile market environment.

For a limited time, under full non-disclosure, RiskSpan will offer a one-time analysis on your securities portfolio.

Please reach out if we can help your institution more fully understand the market risk in your portfolios.

AssetLiabilityRpt

There are many lessons to learn through the SVB failure. While technology (the internet) enabled the fastest run on a bank in US history, technology can also be the solution. As we just saw US Government securities are risk-free for credit but not interest rate movements. When rates rose, security prices on the balance sheet of SVB declined in lock-step. All financial institutions (of all sizes) need to act now and deploy modern tech to manage modern risks – this means managing duration risk on a daily basis. It’s no longer acceptable for banks to review this risk monthly or weekly. Solutions exists that are practical, reliable and affordable.


Are Recast Loans Skewing Agency Speeds?

In a previous blog, we highlighted large curtailments on loans, behavior that was driving a prepayment spike on some new-issue pools. Any large curtailment should also result in shortening the remaining term of the loan because the mortgage payment is nearly always “level-pay” for loans in a conventional pool. And we see that behavior for all mortgages experiencing large curtailments.

However, we noted that nearly half of these loans showed a subsequent extension of their remaining term back to where it would have been without the curtailment.

1

This extension occurred anywhere between zero and sixteen months after the curtailment, with a median of one month after the large payment. We presume these maturity extensions are a loan “recast,” which is explained well in a recent FAQ from Rocket Mortgage. In summary, a recast allows the borrower to lower their monthly payment after making a curtailment above some threshold, typically at least $10,000 extra principal.

Some investors may not be aware that a recast loan may remain in the trust, especially since the terms of the loan are being changed without a buyout.

2

Further, since the extension lowers the monthly payment, the trust will receive principal more slowly ex curtailment than under the original terms of the loan. This could possibly affect buyers of the pool after the curtailment and before the recast.

While the number of recast loans is small, we found it interesting that the loan terms are changed without removing the loans from the pool. We identified nearly 7,800 loans that were issued between 2021 Q4 and 2022 Q1 and had both a curtailment greater than $10,000 and a subsequent re-extension of loan term.

Of these loans, the typical time to term-recast is zero to two months, with 1% of the loans recasting a year or more after the curtailment.

Chart

Some of these loans reported multiple curtailments and recasts, with loan 9991188863 in FR QD1252 extending on three separate occasions after three large curtailments. It seems the door is always open to extension.

For loans that recast their maturities after a curtailment, 85% had extensions between 10 and 25 years.

Chart

Large curtailments are uncommon and term-recasts comprise roughly half of loans in our sample with large curtailments, so term recasts will typically have only a small effect on pool cash flows, extending the time of principal receipt ex curtailment and possibly changing borrower behavior.

3

For large pools, any effect will be typically exceeded by prepayments due to turnover.

However, for some smaller pools the WAM extension due to recast is noticeable. We identified dozens of pools whose WAM extended after a recast of underlying loan(s). The table below shows just a few examples. All of these pools are comparatively small, which is to be expected since just one or two individual loan recasts can have an outsized effect on a small pool’s statistics.

Pool ID Factor Date Current Face Extension (months)
FR QD7617 7/2022 20,070,737 6
FR QD0006 1/2022 15,682,775 5
FN CB3367 11/2022 14,839,919 5
FR QD5736 7/2022 10,916,959 6
FN BU0581 4/2022 10,164,000 6
FR QD4492 6/2022 3,113,532 16
FN BV2076 5/2022 3,165,509 18
FR QD6013 7/2022 3,079,250 22




Get Started
Log in

Linkedin   

risktech2024