Get Started
Articles Tagged with: Credit Analytics

CRT Deal Monitor: April 2019 Update

CRT Deal Monitor: Understanding When Credit Becomes Risky 

This analysis tracks several metrics related to deal performance and credit profile, putting them into a historical context by comparing the same metrics for recent-vintage deals against those of ‘similar’ cohorts in the time leading up to the 2008 housing crisis.  

Some of the charts in this post have interactive features, so click around! We’ll be tweaking the analysis and adding new metrics in subsequent months. Please shoot us an email if you have an idea for other metrics you’d like us to track. 

Monthly Highlights: 

The seasonal nature of recoveries is an easy-to-spot trend in our delinquency outcome charts (loan performance 6 months after being 60 days-past-due). Viewed from a very high level, both Fannie Mae and Freddie Mac display this trend, with visible oscillations in the split between loans that end up current and those that become more delinquent (move to 90+ days past due (DPD)). This trend is also consistent both before and after the crisis – the shares of loans that stay 60 DPD and move to 30 DPD are relatively stable. You can explore the full history of the FNMA and FHLMC Historical Performance Datasets by clicking the 6-month roll links below, and then clicking the “Autoscale” button in the top-right of the graph. 

This trend is salient in April of 2019, as both Fannie Mae Connecticut Avenue Securities (CAS) and Freddie Mac Structured Agency Credit Risk (STACR) have seen 6 months of steady decreases in loans curing, and a steady increase in loans moving to 90+ DPD. While both CAS and STACR hit lows for recovery to current – similar to lows at the beginning of 2018 – it is notable that both CAS and STACR saw multi-year highs for recovery to current in October of 2018 (see Delinquency Outcome Monitoring links below). While continued US economic strength is likely responsible for the improved performance in October, it is not exactly clear why the oscillation would move the recoveries to current back to the same lows experienced in early 2018.  

Current Performance and Credit Metrics
Delinquency Trends:

The simplest metric we track is the share of loans across all deals that is 60+ days past due (DPD). The charts below compare STACR (Freddie) vs. CAS (Fannie), with separate charts for high-LTV deals (G2 for CAS and HQA for STACR) vs. low-LTV deals (G1 for CAS and DNA for STACR).

For comparative purposes, we include a historical time series of the share of loans 60+ DPD for each LTV group. These charts are derived from the Fannie Mae and Freddie Mac loan-level performance datasets. Comparatively, today’s deal performance is much better than even the pre-2006 era.

Low LTV Deals 60 DPD
High LTV Deals 60 DPD
Delinquency Outcome Monitoring:

The tables below track the status of loans that were 60+ DPD. Each bar in the chart represents the population of loans that were 60+ DPD exactly 6 months prior to the x-axis date.  

The choppiness and high default rates in the first few observations of the data are related to the very low counts of delinquent loans as the CRT program ramped up.  

STACR 6 Month Roll
CAS 6 Month Roll

The table below repeats the 60-DPD delinquency analysis for the Freddie Mac Loan Level Performance dataset leading up to and following the housing crisis. (The Fannie Mae loan level performance set yields a nearly identical chart.) Note how many more loans in these cohorts remained delinquent (rather than curing or defaulting) relative to the more recent CRT loans.

Fannie Performance 6 Month Roll
Freddie Performance 6 Month Roll
Deal Profile Comparison:

The tables below compare the credit profiles of recently issued deals. We focus on the key drivers of credit risk, highlighting the comparatively riskier features of a deal. Each table separates the high–LTV (80%+) deals from the low–LTV deals (60%-80%). We add two additional columns for comparison purposes. The first is the ‘Coming Cohort,’ which is meant to give an indication of what upcoming deal profiles will look like. The data in this column is derived from the most recent three months of MBS issuance loan–level data, controlling for the LTV group. These are newly originated and acquired by the GSEs—considering that CRT deals are generally issued with an average loan age between 6 and 15 months, these are the loans that will most likely wind up in future CRT transactions. The second comparison cohort consists of 2006 originations in the historical performance datasets (Fannie and Freddie combined), controlling for the LTV group. We supply this comparison as context for the level of risk that was associated with one of the worst–performing cohorts. 

Credit Profile LLTV – Click to see all deals
Credit Profile HLTV – Click to see all deals
Deal Tracking Reports:

Please note that defaults are reported on a delay for both GSEs, and so while we have CPR numbers available for the most recent month, CDR numbers are not provided because they are not fully populated yet. Fannie Mae CAS default data is delayed an additional month relative to STACR. We’ve left loss and severity metrics blank for fixed-loss deals.

STACR Performance – Click to see all deals
CAS Performance – Click to see all deals

RiskSpan VQI: Current Underwriting Standards – Quarter 1 2019

q1 vqi

The RiskSpan Vintage Quality Index (“VQI”) rose to its highest point (105.16), since September of 2008, in January of 2019, before dropping down to just below 100 in March of 2019. The spike in January was due to a slight increase in all risk factors with cash-out refinances going up by 1.4%. The drop in the VQI from January to March was due to a 5.7% decrease in LTV’s over 80, a 4.2% decrease in DTI’s over 45, and a 1.1% decrease in FICO’s under 660. However, cash-out refinances continued its upward trend and increased by 2.1% in the same time period.

RiskSpan introduced the VQI in 2015 as a way of quantifying the underwriting environment of a particular vintage of mortgage originations. The idea is to provide credit modelers a way of controlling for a particular vintage’s underwriting standards, which tend to shift over time. The VQI is a function of the average number of risk layers associated with a loan originated during a given month. It is computed using the loan-level historical data released by the GSEs in support of their Credit Risk Transfer initiatives (CRT data) for months prior to December 2005, and using loan level disclosure data supporting MBS issuances through today. The value is then normalized such that January 1, 2003 has an index value of 100. The peak of the index, a value of 139 in December 2007, indicates that loans issued in that month had an average risk layer factor 39% greater (i.e., loans issued that month were 39% riskier) than loan originated during 2003. In other words, lower VQI values indicate tighter underwriting standards (and vice-versa).

Build-Up of VQI

The following chart illustrates how each of the following risk layers contributes to the overall VQI:

  • Loans with low credit scores (FICO scores below 660)
  • Loans with high loan-to-value ratios (over 80 percent)
  • Loans with subordinate liens
  • Loans with only one borrower
  • Cash-out refinance loans
  • Loans secured by multi-unit properties
  • Loans secured by investment properties
  • Loans with high debt-to-income ratios (over 45%)
  • Loans underwritten based on reduced documentation
  • Adjustable rate loans

Analytical and Data Assumptions

Population assumptions:

  • Issuance Data for Fannie Mae and Freddie Mac.
  • Loans originated more than three months prior to issuance are excluded because the index is meant to reflect current market conditions.
  • Loans likely to have been originated through the HARP program, as identified by LTV, MI coverage percentage, and loan purpose are also excluded. These loans do not represent credit availability in the market, as they likely would not have been originated today if not for the existence of HARP.

Data Assumptions:

  • Freddie Mac data goes back to December 2005. Fannie Mae data only goes back to December 2014.
  • Certain Freddie Mac data fields were missing prior to June 2008.

GSE historical loan performance data release in support of GSE Risk Transfer activities was used to help back-fill data where it was missing.

Get a Demo

Note: The analysis in this blog post was developed using RiskSpan’s Edge Platform. The RiskSpan Edge Platform is a module-based data management, modeling, and predictive analytics software platform for loans and fixed-income securities. Click here to learn more.


RiskSpan Edge & CRT Data

For participants in the credit risk transfer (CRT) market, managing the massive quantity of data to produce clear insights into deal performance can be difficult and demanding on legacy systems. Complete analysis of the deals involves bringing together historical data, predictive models, and deal cash flow logic, often leading to a complex workflow in multiple systems.

RiskSpan’s Edge platform (RS Edge) solves these challenges, bringing together all aspects of CRT analysis. RiskSpan is the only vendor to bring together everything a CRT analyst needs:

 

  • Normalized, clean, enhanced data across programs (STACR/CAS/ACIS/CIRT),
  • Historical Fannie/Freddie performance data normalized to a single standard,
  • Ability to load loan-level files related to private risk transfer deals,
  • An Agency-specific, loan-level, credit model,
  • Seamless Intex integration for deal and portfolio analysis,
  • Scalable scenario analysis at the deal or portfolio level, and
  • Vendor and client model integration capabilities.
  • Ability to load loan-level files related to private risk transfer deals.

All of these features are built into RS Edge, a cloud-native, data and analytics platform for loans and securities. The RS Edge user interface is accessible via any web browser, and the processing engine is accessible via an application programming interface (API). Accessing RS Edge via the API allows access to the full functionality of the platform, with direct integration into existing workflows in legacy systems such as Excel, Python, and R.

To tailor RS Edge to the specific needs of a CRT investor, RiskSpan is rolling out a series of Excel tools, built using our APIs, which allow for powerful loan-level analysis from the tool everyone knows and loves. Accessing RS Edge via our new Excel templates, users can:

  • Track deal performance,
  • Compare deal profiles,
  • Research historical performance of the full GSE population,
  • Project deal and portfolio performance with our Agency-specific credit model or with user-defined CPR/CDR/severity vectors, and
  • Analyze various macro scenarios across deals or a full portfolio

The web-based user interface allows for on-demand analytics, giving users specific insights on deals as the needs arise. The Excel template built with our API allows for a targeted view tailored to the specific needs of a CRT investor.

For teams that prefer to focus their time on outcomes rather than the build, RiskSpan’s data team can build custom templates around specific customer processes. RiskSpan offers support from premiere data scientists who work with clients to understand their unique concerns and objectives to integrate our analytics with their legacy system of choice.

The images are examples of a RiskSpan template for CRT deal comparison: profile comparison, loan credit score distribution, and delinquency performance for five Agency credit risk transfer deals, pulled via the RiskSpan Data API and rendered in Excel.

______________________________________________________________________________________________


Get a Demo


Case Study: RS Edge – Analytics and Risk

The Client

Large Life Insurance Company – Investment Group

The Problem

The Client was shopping around for an analytics and risk platform to be used by both the trading desk and risk managers.

RiskSpan Edge Platform enabled highly scalable analytics and risk modeling providing visibility and control to address investment analysis, risk surveillance, stress testing and compliance requirements.

The Solution

Initially, the solution was intended for both the trading desk (as pre-trade analysis) as well as risk management (running scenarios on the existing portfolio).  Ultimately, the system was used exclusively by risk management and used heavily by mid-level risk management. 

Cloud Native Risk Service

We have transformed portfolio risk analytics through distributed cloud computing. Our optimized infrastructure powers risk and scenario analytics at speed and cost never before possible in the industry.

Perform advanced portfolio analysis to achieve risk oversight and regulatory compliance with confidence. Access reliable results with cloud-native interactive dashboards that satisfy investors, regulators, and clients.

Two Flexible Options
Fund Subscriber Service + Managed Service

Each deployment option includes on-demand analytics, standard batch and over-night processing or a hybrid model to suit your specific business needs. Our team will work with customers to customize deployment and delivery formats, including investor-specific reporting requirements.

Easy Integration + Delivery
Access Your Risk

Accessing the results of your risk run is easy via several different supported delivery channels. We can accommodate your specific needs – whether you’re a new hedge fund, fund-of-funds, bank or other Enterprise-scale customer.

“We feel the integration of RiskSpan into our toolkit will enhance portfolio management’s trading capabilities as well as increase the efficiency and scalability of the downstream RMBS analysis processes.  We found RiskSpan’s offering to be user-friendly, providing a strong integration of market / vendor data backed by a knowledgeable and responsive support team.”

The Deliverables

  • Enabled running various HPI scenarios and tweaked the credit model knobs to change the default curve, running a portfolio of a couple hundred non-agency RMBS
  • Scaling the processing power up/down via the cloud, and they would iterate through runs, changing conditions until they got the risk numbers they needed
  • Simplified integration into their risk reporting system, external to RiskSpan

RiskSpan VQI: Current Underwriting Standards – Quarter 4 2018

The RiskSpan Vintage Quality Index (“VQI”) rose above, and continued to stay above, 100 in the last quarter of 2018, reaching its highest point in the last decade in October of 2018. The spike was driven by a roughly 2% increase in Cash-out Refinances and a 1.5% increase in investor occupied housing. In the last quarter, RiskSpan onboarded the FNMA and FHLMC daily loan level issuance data onto our Edge Platform, and has begun generating the VQI with our Historical Analytics API. Values for the some historical months of the VQI were re-estimated using the new data sources.

RiskSpan introduced the VQI in 2015 as a way of quantifying the underwriting environment of a particular vintage of mortgage originations. The idea is to provide credit modelers a way of controlling for a particular vintage’s underwriting standards, which tend to shift over time.

The VQI is a function of the average number of risk layers associated with a loan originated during a given month. It is computed using the loan-level historical data released by the GSEs in support of their Credit Risk Transfer initiatives (CRT data) for months prior to December 2005, and using loan level disclosure data supporting MBS issuances through today. The value is then normalized such that January 1, 2003 has an index value of 100. The peak of the index, a value of 139 in December 2007, indicates that loans issued in that month had an average risk layer factor 39% greater (i.e., loans issued that month were 39% riskier) than loan originated during 2003. In other words, lower VQI values indicate tighter underwriting standards (and vice-versa).

Build-Up of VQI

The following chart illustrates how each of the following risk layers contributes to the overall VQI:

  • Loans with low credit scores (FICO scores below 660)
  • Loans with high loan-to-value ratios (over 80 percent)
  • Loans with subordinate liens
  • Loans with only one borrower
  • Cash-out refinance loans
  • Loans secured by multi-unit properties
  • Loans secured by investment properties
  • Loans with high debt-to-income ratios (over 45%)
  • Loans underwritten based on reduced documentation
  • Adjustable rate loans

Analytical and Data Assumptions

Population assumptions:

  • Issuance Data for Fannie Mae and Freddie Mac.
  • Loans originated more than three months prior to issuance are excluded because the index is meant to reflect current market conditions.
  • Loans likely to have been originated through the HARP program, as identified by LTV, MI coverage percentage, and loan purpose are also excluded. These loans do not represent credit availability in the market, as they likely would not have been originated today if not for the existence of HARP.

Data Assumptions:

  • Freddie Mac data goes back to December 2005. Fannie Mae data only goes back to December 2014.
  • Certain Freddie Mac data fields were missing prior to June 2008.

GSE historical loan performance data release in support of GSE Risk Transfer activities was used to help back-fill data where it was missing.

Get a Demo

Note: The analysis in this blog post was developed using RiskSpan’s Edge Platform. The RiskSpan Edge Platform is a module-based data management, modeling, and predictive analytics software platform for loans and fixed-income securities. Click here to learn more.[/vc_column_text][/vc_column][/vc_row]


Choosing a CECL Methodology | Doable, Defensible, Choices Amid the Clutter

CECL advice is hitting financial practitioners from all sides. As an industry friend put it, “Now even my dentist has a CECL solution.”

With many high-level commentaries on CECL methodologies in publication (including RiskSpan’s ), we introduce this specific framework to help practitioners eliminate ill-fitting methodologies until one remains per segment. We focus on the commercially available methods implemented in the CECL Module of our RS Edge Platform, enabling us to be precise about which methods cover which asset classes, require which data fields, and generate which outputs. Our decision framework covers each asset class under the CECL standard and considers data availability, budgetary constraints, value placed on precision, and audit and regulatory scrutiny.

Performance Estimation vs. Allowance Calculations

Before evaluating methods, it is clarifying to distinguish performance estimation methods from allowance calculation methods (or simply allowance calculations). Performance estimation methods forecast the credit performance of a financial asset over the remaining life of the instrument, and allowance calculations translate that performance forecast into a single allowance number.

There are only two allowance calculations allowable under CECL: the discounted cash flow (DCF) calculation (ASC 326-20-30-4), and the non-DCF calculation (ASC 326-20-30-5). Under the DCF allowance calculation, allowance equals amortized cost minus the present value of expected cash flows. The expected cash flows (the extent to which they differ from contractual cash flows) must first be driven by some performance estimation method. Under the non-DCF allowance calculation, allowance cumulative expected credit losses of amortized cost (roughly equal to future principal losses). These future losses of amortized cost, too, must first be generated by a performance estimation method.

Next, we show how to select performance estimation methods, then allowance calculations.

Selecting Your Performance Estimation Method

Figure 1 below lays out the performance estimation methods available in RiskSpan’s CECL Module. We group methods into “Practical Methods” and “Premier Methods.” In general, Practical Methods calculate average credit performance from a user-selected historical performance data set and extrapolate those historical averages – as adjusted by user-defined management adjustments for macroeconomic expectations and other factors – across the future life of the asset. When using a Practical Method, every instrument in the same user-defined segment will have the same allowance ratio.

Premier Methods involve statistical models built on large performance datasets containing instrument-level credit attributes, instrument-level performance outcomes, and contemporaneous macroeconomic data. While vendor-built Premier Methods come pre-built on large industry datasets, they can be tuned to institution-specific performance if the user supplies performance data. Premier Methods take instrument-level attributes and forward-looking macroeconomic scenarios as inputs and generate instrument-level, macro-conditioned results based on statistically valid methods. Management adjustments are possible, but the model results already reflect the input macroeconomic scenario(s).

Check marks in Figure 1 indicate the class(es) of financial asset that each performance estimation method covers. Single checkmarks (✔) indicate methods that require the user to provide historical performance data. Double checkmarks (✔✔) indicate methods that, at the user’s option, can be executed using historical performance data from industry sources and therefore do not require the customer to supply historical performance data. All methods require the customer to provide basic positional data as of the reporting date (outstanding balance amounts, the asset class of each instrument, etc.)

Figure 1 – Performance Estimation Methods in RiskSpan’s CECL Module

[1] Commercial real estate
[2] Commercial and industrial loans

To help customers choose their performance estimation methods, we walk them through the decision tree shown in Figure 3. These steps to select a performance estimation method should be followed for each portfolio segment, one at a time. As shown, the first step to shorten the menu of methods is to choose between Practical Methods and Premier Methods. Premier Methods available today in the RS Edge Platform include both methods built by RiskSpan (prefixed RS) and methods built by our partner, Global Market Intelligence (S&P).

The choice between Premier Methods and Practical Methods is primarily a tradeoff between instrument-level precision and scientific incorporation of macroeconomic scenarios on the Premier side versus lower operational costs on the Practical side. Because Premier Models produce instrument-specific forecasts, they can be leveraged to accelerate and improve credit screening and pricing decisions in addition to solving CECL. The results of Premier Methods reflect macroeconomic outlook using consensus statistical techniques, whereas Practical Methods generate average, segment-level historical performance that management then adjusts via Q-Factors. Such adjustments may not withstand the intense audit and regulatory scrutiny that larger institutions face. Also, implicit in instrument-level precision and scientific macroeconomic conditioning is that Premier Methods are built on large-count, multi-cycle, granular performance datasets. While there are Practical Methods that reference third-party data like Call Reports, Call Report data represents a shorter economic period and lacks granularity by credit attributes.

The Practical Methods have two advantages. First, they easier for non-technical stakeholders to understand. Secondly, license fees for Premier Methods are lower than for Practical Methods.

Suppose that for a particular asset class, an institution wants a Premium Method. For most asset classes, RiskSpan’s CECL Module selectively features one Premier Method, as shown Figure 1. In cases where the asset class is not covered by a Premier Method in Edge, the next question becomes: does a suitable, affordable vendor model exist? We are familiar with many models in the marketplace, and can advise on the benefits, drawbacks, and pricing of each. Vendor models come with explanatory documentation that institutions can review pre-purchase to determine comfort. Where a viable vendor model exists, we assist institutions by integrating that model as a new Premier Method, accessible within their CECL workflow. Where no viable vendor model exists, institutions must evaluate their internal historical performance data. Does it contain  enough instruments, span enough time ,and include enough fields  to build a valid model? If so, we assist institutions in building custom models and integrating them within their CECL workflows. If not, it’s time a begin or continue a data collection process that will eventually support modeling, and in the meantime, apply a Practical Method.

To choose among Practical Methods, we first distinguish between debt securities and other asset classes. Debt securities do not require internal historical data because more robust, relevant data is available from industry sources. We offer one Practical Method for each class of debt security, as shown in Figure 1.

For asset classes other than debt securities, the next step is to evaluate internal data. Does it represent (segment-level summary data is fine for Practical Methods) and to drive meaningful results? If not, we suggest applying the Remaining Life Method, a method that has been showcased by regulators and that references Call Report data (which the Edge platform can filter by institution size and location). If adequate internal data exists, eliminate methods that are not asset class-appropriate (see Figure 1) or that require specific data fields the institution lacks. Figure 2 summarizes data requirements for each Practical Method, with a tally of required fields by field type. RiskSpan can provide institutions with detailed data templates for any method upon request. From among the remaining Practical Methods, we recommend institutions apply this hierarchy:

  • Vintage Loss Rate: This method makes the most of recent observations and datasets that are shorter in timespan, whereas the Snapshot Loss Rate requires frozen pools to age substantially before counting toward historical performance averages. The Vintage Loss Rate explicitly considers the age of outstanding loans and leases and requires relatively few data fields.
  • Snapshot Loss Rate: This method has the drawbacks described above, but for well-aged datasets produces stable results and is a very intuitive and familiar method to financial institution stakeholders.
  • Remaining Life: This method ignores the effect of loan seasoning on default rates and requires user assumptions about prepayment rates, but it has been put forward by regulators and is a necessary and defensible option for institutions who lack the data to use the methods above.

Figure 2 – Data Requirements for Practical Methods

(Number of Data Fields Required)

[3] Denotes fields required to perform method with customer’s historical performance data. If the customer’s data lacks the necessary fields, alternatively this method can be performed using Call Report data.

Figure 3 – Methodology Selection Framework

Selecting Your Allowance Calculation

After selecting a performance estimation method for each portfolio segment, we must select our corresponding allowance calculations.

Note that all performance estimation methods in RS Edge generate, among their outputs, undiscounted expected credit losses of amortized cost. Therefore, users can elect the non-DCF allowance calculation for any portfolio segment regardless of the performance estimation method. Figure 5 shows this.

A DCF allowance calculation requires the elements shown in Figure 4. Among the Premier (performance estimation) Methods, RS Resi, RS RMBS, and RS Structured Finance require contractual features as inputs and generate among their outputs the other elements of a DCF allowance calculation. Therefore, users can elect the DCF allowance calculation in combination with any of these methods without providing additional inputs or assumptions. For these methods, the choice between the DCF and non-DCF allowance calculation often comes down to anticipated  impact on allowance level.

The remaining Premier Methods to discuss are the S&P commercial and industrial loans (C&I) – which covers all corporate entities, financial and non-financial, and applies to both loans and bonds – and the S&P commercial real estate (CRE) method. These methods do not require all the instruments’ contractual features as inputs (an advantage in terms of reducing the input data requirements). They project periodic default and LGD rates, but not voluntary prepayments or liquidation lags. Therefore, users provide additional contractual features as inputs and voluntary prepayment rate and liquidation lag assumptions. The CECL Module’s cash flow engine then integrates the periodic default and LGD rates produced by the S&P C&I and CRE methods, together with user-supplied contractual features and prepayment and liquidation lag assumptions, to produce expected cash flows. The Module discounts these cash flows according to the CECL requirements and differences the present values from amortized cost to calculate allowance. In considering this DCF allowance calculation with the S&P performance estimation methods, users typically weigh the impact on allowance level against the task of supplying the additional data and assumptions.

To use a DCF allowance calculation in concert with a Practical (performance estimation) Method requires the user to provide contractual features (up to 20 additional data fields), liquidation lags, as well as monthly voluntary prepayment, default, and LGD rates that reconcile to the cumulative expected credit loss rate from the performance estimation method. This makes the allowance a multi-step process. It is therefore usually simpler and less costly overall to use a Premier Method if the institution wants to enable a DCF allowance . The non-DCF allowance calculation is the natural complement to the Practical Methods.

Figure 4 – Elements of a DCF Allowance Calculation

I believe the S&P ECL approach is always (even with added prepayment info) a method closely related to, but not a discounted cash flow method, since the allowance for credit losses in S&P approach is calculated directly from the expected credit losses and not as amortized cost minus(-) present value of future cash flows. But this is good since it requires less inputs and easier to relate to macro-economic factors than is a pure DCF. This is consistent with Figure 5.

Figure 5 – Allowance Calculations Compatible with Each Performance Estimation Method

Once you have selected a performance estimation method and allowance calculation method for each segment, you can begin the next phase of comparing modeled results to expectations and historical performance and tuning model settings accordingly and management inputs accordingly. We are available to discuss CECL methodology further with you; don’t hesitate to get in touch!

Get a Demo


RiskSpan Partners with S&P Global Market Intelligence

ARLINGTON, Va., December 5, 2018 /PRNewswire/ — Virginia-based modeling and analytics SaaS vendor RiskSpan announced today that it will be partnering with S&P Global Market Intelligence to expand the capabilities of its commercially-available RS Edge Platform.

RS Edge is a SaaS platform that integrates normalized loan and securities data, predictive models and complex scenario analytics for commercial banks, credit unions, insurance companies, and other financial institutions. The RS Edge Platform solves the hardest data management and analytical problem – affordable off-the-shelf integration of clean data and reliable models.

RiskSpan’s CECL module features broad-based methodologies covering all loan types and security types. The integration of S&P Global Market Intelligence’s C&I and CRE CECL models, built on 36 years of default and recovery data, adds loan-level, econometric models for these major asset classes from a globally recognized credit ratings institution. These enhancements further equip RiskSpan clients to navigate FASB’s impending CECL standard as well as IFRS 9 requirements.

“We’re very excited to leverage S&P Global Market Intelligence’s CECL credit models and methodologies on our SaaS platform” said RiskSpan CEO Bernadette Kogler. “Coupled with RiskSpan’s technology capabilities and risk management expertise, our CECL solution is set up to provide unmatched value to the market.”

Bob Durante, Senior Director of Risk Solutions at S&P Global Market Intelligence added, “We are pleased to offer our CECL credit models through partners such as RiskSpan. This partnership brings our best of breed CECL models directly through RiskSpan to a wide array of customers in the commercial banking, community banking, and insurance industries.”

Learn more about our CECL module here.

Get a Demo

About RiskSpan

RiskSpan simplifies the management of complex data and models in the capital markets, commercial banking, and insurance industries. We transform seemingly unmanageable loan data and securities data into productive business analytics.

About S&P Global Market Intelligence

At S&P Global Market Intelligence, we know that not all information is important—some of it is vital. Accurate, deep and insightful. We integrate financial and industry data, research and news into tools that help track performance, generate alpha, identify investment ideas, understand competitive and industry dynamics, perform valuations and assess credit risk. Investment professionals, government agencies, corporations and universities globally can gain the intelligence essential to making business and financial decisions with conviction.

S&P Global Market Intelligence a division of S&P Global (NYSE: SPGI), provides essential intelligence for individuals, companies and governments to make decisions with confidence. For more information, visit www.spglobal.com/marketintelligence.


CECL: DCF vs. Non-DCF Allowance — Myth and Reality

FASB’s CECL standard allows institutions to calculate their allowance for credit losses as either “the difference between the amortized cost basis and the present value of the expected cash flows” (ASC 326-20-30-4) or “expected credit losses of the amortized cost basis” (ASC 326-20-30-5). The first approach is commonly called the discounted cash flow or “DCF approach” and the second approach the “non-DCF approach.” In the second approach, the allowance equals the undiscounted sum of the amortized cost basis projected not to be collected. For the purposes of this post, we will equate amortized cost with unpaid principal balance.

A popular misconception – even among savvy professionals – is that a DCF-based allowance is always lower than a non-DCF allowance given the same performance forecast. In fact, a DCF allowance is sometimes higher and sometimes lower than a non-DCF allowance, depending upon the remaining life of the instrument, the modeled recovery rate, the effective interest rate (EIR), and the time from default until recovery (liquidation lag). Below we will compare DCF and non-DCF allowances while systematically varying these key differentiators.

Our DCF allowances reflect cash inflows that follow the SIFMA standard formulas. We systematically vary time to maturity, recovery rate, liquidation lag and EIR to show their impact on DCF vs. non-DCF allowances (see Table 1 for definitions of these variables). We hold default rate and voluntary prepayment rate constant at reasonable levels across the forecast horizon. See Table 2 for all loan features and behavioral assumptions held constant throughout this exercise.

For clarity, we reiterate that the DCF allowances we will compare to non-DCF allowances reflect amortized cost minus discounted cash inflows, per ASC 326-20-30-4. A third approach, which is unsound and therefore excluded, is the discounting of accounting losses. This approach will understate expected credit losses by using the interest rate to discount principal losses while ignoring lost interest itself.

Table 1 – Key Drivers of DCF vs. Non-DCF Allowance Differences (Systematically Varied Below)

Variable Definitions and Notes
Months to Maturity Months from reporting date until last scheduled payment
Effective Interest Rate (EIR) The rate of return implicit in the financial asset. Per CECL, this is the rate used to discount expected cash flows when using the DCF approach and, by rule, is calculated using the asset’s contractual or prepay-adjusted cash flows. In this exercise, we set unpaid principal balance equal to amortized cost, so the EIR is the same assuming either contractual or prepay-adjusted cash flows and matches the instrument’s note rate.
Liquidation Lag (Months) Months between first missed payment and receipt of recovery proceeds
Recovery Rate Net cash inflow at liquidation, divided by the principal balance of the loan at the time it went into default. Note that 100% recovery will not include recovery of unpaid interest.

 

Table 2 – Loan Features and Behavioral Assumptions Held Constant

Book Value on Reporting Date Par

(Amortized Cost = Unpaid Principal Balance)

Performance Status on Reporting Date Current
Amortization Type Level pay, fully amortizing, zero balloon
Conditional Default Rate (Annualized) 0.50%
Conditional Voluntary Prepayment Rate (Annualized) 10.00%

 

Figure 1 compares DCF versus non-DCF allowances. It is organized into nine tables, covering the landscape of loan characteristics that drive DCF vs. non-DCF allowance differences. The cells of the tables show DCF allowance minus Non-DCF allowance in basis points. Thus, positive values mean that the DCF allowance is greater.

 

  • Tables A, B and C show loans with 100% recovery rates. For such loans, ultimate recovery proceeds match exposure at default. Under the non-DCF approach, as long as recovery proceeds eventually cover principal balance at the time of default, allowance will be zero. Accordingly, the non-DCF allo­wance is 0 in every cell of tables A, B and C. Longer liquidation lags, however, diminish present value and thus increase DCF allowances. The greater the discount rate (the EIR), the deeper the hit to present value. Thus, the DCF allowance increases as we move from the top-left to the bottom-right of tables A, B and C. Note that even when liquidation lag is 0, 100% recovery still excludes the final month’s interest, and a DCF allowance (which reflects total cash flows) will accordingly reflect a small hit. Tables A, B and C differ in one respect – the life of the loan. Longer lives translate to greater total defaulted dollars, greater amounts exposed to the liquidation lags, and greater DCF allowances.
  • Tables G, H and I show loans with 0% recovery rates. While 0% recovery rates may be rare, it is instructive to understand the zero-recovery case to sharpen our intuitions around the comparison between DCF and non-DCF allowances. With zero recovery proceeds, the loans produce only monthly (or periodic) payments until default. Liquidation lag, therefore, is irrelevant. As long as the EIR is positive and there are defaults in payment periods besides the first, the present value of a periodic cash flow stream (using EIR as the discount rate) will exceed cumulative principal collected. Book value minus the present value of the periodic cash flow stream, therefore, will be less than than the cumulative principal not collected, and thus DCF allowance will be lower. Appendix A explains why this is the case. As Tables G, H and I show, the advantage (if we may be permitted to characterize a lower allowance as an advantage) of the DCF approach on 0% recovery loans is greater with greater discount rates and greater loan terms.
  • Tables D, E and F show a more complex (and more realistic) scenario where the recovery rate is 75% (loss-given-default rate is 25%). Note that each cell in Table D falls in between the corresponding values from Table A and Table G; each cell in Table E falls in between the corresponding values from Table B and Table H; and each cell in Table F falls in between the corresponding values from Table C and Table I. In general, we can see that long liquidation lags will hurt present values, driving DCF allowances above non-DCF allowances. Short (zero) liquidation lags allow the DCF advantage from the periodic cash flow stream (described above in the comments about Tables G, H and I) to prevail, but the size of the effect is much smaller than with 0% recovery rates because allowances in general are much lower. With moderate liquidation lags (12 months), the two approaches are nearly equivalent. Here the difference is made by the loan term, where shorter loans limit the periodic cash flow stream that advantages the DCF allowances, and longer loans magnify the impact of the periodic cash flow stream to the advantage of the DCF approach.

Figure 1 – DCF Allowance Relative to Non-DCF Allowance (difference in basis points)

Liquidation Lag Table

Conclusion

  • Longer liquidation lags will increase DCF allowances relative to non-DCF allowances as long as recovery rate is greater than 0%.
  • Greater EIRs will magnify the difference (in either direction) between DCF and non-DCF allowances.
  • At extremely high recovery rates, DCF allowances will always exceed non-DCF allowances; at extremely low recovery rates, DCF allowances will always be lower than non-DCF allowances. At moderate recovery rates, other factors (loan term and liquidation lag) make the difference as to whether DCF or non-DCF allowance is higher.
  • Longer loan terms both a) increase allowance in general, by exposing balances to default over a longer time horizon; and b) magnify the significance of the periodic cash flow stream relative to the liquidation lag, which advantages DCF allowances.
    • Where recovery rates are extremely high (and so non-DCF allowances are held low or to zero) the increase to defaults from longer loan terms will drive DCF allowances further above non-DCF allowances.
    • Where recovery rates are moderate or low, the increase to loan term will lower DCF allowances relative to non-DCF allowances.[1]

Note that we have not specified the asset class of our hypothetical instrument in this exercise. Asset class by itself does not influence the comparison between DCF and non-DCF allowances. However, asset class (for example, a 30-year mortgage secured by a primary residence, versus a five-year term loan secured by business equipment) does influence the variables (loan term, recovery rate, liquidation lag, and effective interest rate) that drive DCF vs. non-DCF allowance differences. Knowledge of an institution’s asset mix would enable us to determine how DCF vs. non-DCF allowances will compare for that portfolio.

Appendix A:

The present value of a periodic cash flow stream, as discounted per CECL at the Effective Interest Rate (EIR), will always exceed cumulative principal collected when the following conditions are met: recovery rate is 0%, EIR is positive, and there are defaults in payment periods other than the first.

To understand why this is the case, note that the difference between the present value of cash flows and cumulative principal collected has two components: cumulative interest collected, which accrues to the present value of cash flows but not cumulative principal collected, and the cumulative dollar impact of discounting future cash flows, which lowers present value but does not touch cumulative principal collected. The present value of cash flows will exceed cumulative principal collected when the interest impact exceeds the discounting impact. The interest impact is always greater in the early months of a loan forecast because interest makes up a large share of total payment and value lost to discounting is minimal. As the loan ages, the interest share diminishes and the discount impact grows. In the pristine case, where book value equals unpaid principal balance and defaults are zero, the discount effect will finally catch up to the interest effect with the final payment. The present value of the total cash flow stream will thus equal the cumulative principal collected and equal the beginning unpaid principal balance. If there are any defaults in periods later than the first, however, the discount effect can never fully catch up to the interest effect. Table 3 provides one such example.

Table 3 – Cash Flow, Principal Losses, Present Value and Allowance under 0% Recovery

Loan Features and Assumptions:

  • Reporting-date amortized cost and unpaid principal balance = $10,000
  • 5-year, annual-pay, fully amortizing loan
  • Fixed note rate (and effective interest rate) of 4%
  • 10% conditional voluntary prepayment rate, 0.50% conditional default rate, 0% recovery rate

DCF allowance

DCF allowance = $10,000 − $9,872 = $128

Non-DCF allowance = Sum of Principal Losses = $134

We make the following important notes:

  • First-period defaults effectively make the loan a smaller-balance loan and will not cause a difference between the DCF allowance and non-DCF allowance; only defaults subsequent to the first period will drive a difference between the two approaches.
  • Interest-only loans will exacerbate the advantage of DCF allowances relative to non-DCF allowances.
  • For floating-rate instruments, a projected change in coupon rate (based on the known level of the underlying index as of the reporting date) does not change the fact that DCF allowance will be lower than non-DCF allowance if the conditions of 0% recovery rate, positive EIR, and presence of non-first-period defaults are met.

Finally, the discounting approach under CECL is different from that used in finance to assess the fundamental value of a loan. A loan’s fundamental value can be determined by discounting its expected cash flows at a market-observed rate of return (i.e., the rate that links recent market prices on similar-risk instruments to the expected cash flows on those instruments.) As we have noted in other blogs, CECL’s DCF method does not produce the fundamental value of a loan.

[1] We see just one case in Figure 1 that appears to be an exception to this rule, as we compare the lower-right corner of Table D to the lower-right corner of Table E. What happens between these two cells is that the DCF allowance grows from 36.8 basis points in Table D to 58.9 basis points in Table E (a 60% increase in ratio terms), while the non-DCF allowance grows from 28.4 basis points in Table D to 50.1 basis points in Table E (a 77% increase in ratio terms). Because the allowances rise in general, the subtractive difference between them increases, but we see more rapid growth of the non-DCF allowance as we continue moving from the lower-right corner of Table E to the same corner of Table F.

Get a Demo


RiskSpan VQI: Current Underwriting Standards – September 2018

VQI held steady for the September at 99.31 compared to 99.43 in August. There was a small increase in proportion of loans made made for cash-out refinance. However, there was a slight reduction in loans made to Investors which offset the increase. VQI below 100 indicates stricter underwriting standards compared to January 2003.

RiskSpan introduced the VQI in 2015 as a way of quantifying the underwriting environment of a particular vintage of mortgage originations. The idea is to provide credit modelers a way of controlling for a particular vintage’s underwriting standards, which tend to shift over time.

The VQI is a function of the average number of risk layers associated with a loan originated during a given month. It is computed using the loan-level historical data released by the GSEs in support of their Credit Risk Transfer initiatives (CRT data). The value is then normalized such that January 1, 2003 has an index value of 100. The peak of the index, a value of 139 in December 2007, indicates that loans issued in that month had an average risk layer factor 39% greater (i.e., loans issued that month were 39% riskier) than loan originated during 2003. In other words, lower VQI values indicate tighter underwriting standards (and vice-versa).

Build-Up of VQI

The following chart illustrates how each of the following risk layers contributes to the overall VQI:

  • Loans with low credit scores (FICO scores below 660)
  • Loans with high loan-to-value ratios (over 80 percent)
  • Loans with subordinate liens
  • Loans with only one borrower
  • Cash-out refinance loans
  • Loans secured by multi-unit properties
  • Loans secured by investment properties
  • Loans with high debt-to-income ratios (over 45%)
  • Loans underwritten based on reduced documentation
  • Adjustable rate loans

The following graphs illustrate how each of the VQI components have evolved over time.

Analytical and Data Assumptions

Population assumptions:

  • Issuance Data for Fannie Mae and Freddie Mac.
  • Loans originated more than three months prior to issuance are excluded because the index is meant to reflect current market conditions.
  • Loans likely to have been originated through the HARP program, as identified by LTV, MI coverage percentage, and loan purpose are also excluded. These loans do not represent credit availability in the market, as they likely would not have been originated today if not for the existence of HARP.

Data Assumptions:

  • Freddie Mac data goes back to December 2005. Fannie Mae data only goes back to December 2014.
  • Certain Freddie Mac data fields were missing prior to June 2008.

GSE historical loan performance data release in support of GSE Risk Transfer activities was used to help back-fill data where it was missing.

Get a Demo

————————————————————————————————————————————–

Note: The analysis in this blog post was developed using RiskSpan’s Edge Platform. The RiskSpan Edge Platform is a module-based data management, modeling, and predictive analytics software platform for loans and fixed-income securities. Click here to learn more.


CRT Exposure to Hurricane Michael

With Hurricane Michael approaching the Gulf Coast, we put together some interactive charts looking at the affected metro areas, and their related CRT exposure (Both CAS and STACR). Given the large area of impact with Hurricane Michael, we have included a nearly exhaustive selection of MSA’s. Click on a deal ID along the left-hand side of the plot to view its exposure to each MSA. Most of the mortgage delinquencies in the wake of Hurricane Harvey quickly cured. Holders of securities backed by loans that ultimately defaulted (typically because the property was completely destroyed) had much of their exposure mitigated by insurance proceeds, government intervention, and other relief provisions.  


   

Company

Products

Security & Compliance

Get Started