Get Started
Get a Demo
Blog Archives

EDGE: Cash-Out Refi Speeds 

Mortgage rates have risen nearly 200bp from the final quarter of 2021, squelching the most recent refinancing wave and leaving the majority of mortgage holders with rates below the prevailing rate of roughly 5% (see chart below). For most homeowners, it no longer makes sense to refinance an existing 30yr mortgage into another 30yr mortgage.


But, as we noted back in February, the rapid rise in home prices has left nearly all households with significant, untapped gains in their household balance sheets. For homeowners with consumer debt at significantly higher rates than today’s mortgage rates, it can make economic sense to consolidate debt using a cash-out refi loan against their primary residence. As we saw during 2002-2003, cash-out refinancing can drive speeds on discount mortgages significantly higher than turnover alone. Homeowners can also become “serial cash-out refinancers,” tapping additional equity multiple times.  

In this analysis, we review prepayment speeds on cash-out refis, focusing on discount MBS, i.e., mortgages whose note rates are equal to or below today’s prevailing rates. 

The volume of cash-out refis has grown steadily but modestly since the start of the pandemic, whereas rate/term refis surged and fell dramatically in response to changing interest rates. Despite rising rates, the substantial run-up in home prices and increased staffing at originators from the recent refi boom has left the market ripe for stronger cash-out activity. 

The pivot to cash-out issuance is evidenced by the chart below, illustrating how the issuance of cash-out refi loans (the black line below) in the first quarter of this year was comparable with issuance in the summer of 2021, when rates near historic lows, while rate/term refis (blue line) have plunged over the same period. 

With cash-out activity set to account for a larger share of the mortgage market, we thought it worthwhile to compare some recent cash-out activity trends. For this analysis, the graphs consist of truncated S-curves, showing only the left-hand (out-of-the-money) side of the curve to focus on discount mortgage behavior in a rising rate environment where activity is more likely to be influenced by serial cash-out activity. 

This first chart compares recent performance of out-of-the money mortgages by loan purpose, comparing speeds for purchase loans (black) with both cash-out refis (blue) and rate/term refis (green). Notably, cash-out refis offer 1-2 CPR upside over rate/term refis, only converging to no cash out refis when 100bp out of the money.[1] 

Next, we compare cash-out speeds by servicer type, grouping mortgages that are serviced by banks (blue) versus mortgages serviced by non-bank servicers (green). Non-bank servicers produce significantly faster prepay speeds, an advantage over bank-serviced loans for MBS priced at a discount. 

Finally, we drill deeper into the faster non-bank-serviced discount speeds for cash-out refis. This chart isolates Quicken (red) from other non-bank servicers (green). While Quicken’s speeds converge with those of other non-banks at the money, Quicken-serviced cash-out refis are substantially faster when out of the money than both their non-bank counterparts and the cash-out universe as a whole.[2]


We suspect the faster out-of-the-money speeds are being driven by serial cash-out behavior, with one servicer in particular (Quicken) encouraging current mortgage holders to tap home equity as housing prices continue to rise. 

This analysis illustrates how pools with the highest concentration of Quicken-serviced cash-out loans may produce substantially higher out-of-the-money speeds relative to the universe of non-spec pools. To find such pools, users can enter a list of pools into the Edge platform and simultaneously filter for both Quicken and cash-out refi. The resultant query will show each pool’s UPB for this combination of characteristics. 

Contact US to run this or any query

RiskSpan Technology

RiskSpan’s Edge Platform is a powerful combination of data, models, and analytics for loans, securities, and MSRs.

Get A Demo

EDGE: Recent Performance of GNMA RG Pools

In early 2021, GNMA began issuing a new class of custom pools with prefix “RG.” These pools are re-securitizations of previously delinquent loans which were repurchased from pools during the pandemic.[1] Loans in these pools are unmodified, keeping the original rate and term of the mortgage note. In the analysis below, we review the recent performance of these pools at loan-level detail. The first RG pools were issued in February 2021, growing steadily to an average rate of $2B per month from Q2 onward, with a total outstanding of $21 billion. 


The majority of RG issuance has included loans that are two to seven years seasoned and represent a consistent 2-3% of the total GNMA market for those vintages, dashed line below.

Coupons of RG pools are primarily concentrated between 3.0s through 4.5s, with the top-10 Issuers of RG pools account for nearly 90% of the issuance.

Below, we compare speeds on GNMA RG pools under various conditions. First, we compare speeds on loans in RG pools (black) versus same-age multi-lender pools (red) over the last twelve months. When out of the money, RG pools are 4-5 CPR slower than comparably aged multi-lender pools but provide a significantly flatter S-curve when in-the-money.

Next, we plot the S-curve for all GNMA RG loans with overlays for loans that are serviced by banks (green) and non-banks (blue). Bank-serviced RG loans prepay significantly slower than non-banks by an average of 9 CPR weighted across all incentives. Further, this difference is caused by voluntary prepays, with buyouts averaging a steady 4% CBR, plus or minus 1 CBR, for both banks and non-banks with no discernable difference between the two (second graph).

Finally, we analyzed the loan-level transition matrix by following each RG loan through its various delinquency states over the past year. We note that the transition rate from Current to 30-day delinquent for RG loans is 1.6%, only marginally worse than that of the entire universe of GNMA loans at 1.1%. RG loans transitioned back from 30->Current at similar rates to the wider Ginnie universe (32.3%) and the 30->60 transition rate for RG loans was marginally worse than the Ginnie universe, 30.8% versus  24.0%.[2]

Monthly Transition Rates for Loans in GNMA RG Pools: In summary, loans in RG pools have shown a substantial level of voluntary prepayments and comparatively low buyouts, somewhat unexpected especially in light of their recent delinquency. Further, their overall transition rates to higher delinquency states, while greater than the GNMA universe, is markedly better than that of reperforming loans just prior to the outbreak of COVID.


EDGE: Extension Protection in a Rising Rate Environment

With the Fed starting their tightening cycle and reducing balance sheet, mortgage rates have begun rising. Since late summer, 30-year conforming rates have risen more than 100bp, with 75bp of that occurring since the end of December. The recent flight-to-quality rally has temporarily eased that, but the overall trend remains in place for higher mortgage rates.

With this pivot, mortgage investors have switched from focusing on prepayment protection to mitigating extension risk. In this post, we offer analysis on extension risk and turnover speeds for various out-of-the-money Fannie and Freddie cohorts.[1]

In the chart below, we first focus on out-of-the-money prepays on lower loan balance loans. For this analysis, we analyzed speeds on loans that were 24 to 48 months seasoned. We further grouped the loan balance stories into meta-groups, as the traditional groupings of “85k-Max”, etc, showed little difference in out-of-the-money speeds. When compared to loans with balances above 250k, speeds on lower loan balance loans were a scant 1-2 CPR faster than borrowers with larger loan balances, when prevailing rates were 25bp to 100bp higher than the borrower’s note rate.

We next compare borrowers in low FICO pools, high LTV pools, and 100% investor pools. Speeds on low-FICO pools (blue) offer some extension protection due to higher involuntary speeds. At the other end, loans in 100% investor pools were dramatically slower than non-spec pools when out-of-the money.

Finally, we look at the behavior of borrowers in non-spec pools segregated by loan purpose, again controlling for loan age. Borrowers with refi loans pay significantly faster than purchase loans when only slightly out-of-the money. As rates continue to rise, refi speeds converge to purchase loans at 75bp out of the money and pay slower when 75-100bp out of the money, presumably due to a stronger lock-in effect.


We also separated these non-spec borrowers by originators, grouping the largest banks and non-bank originators together. Out-of-the-money speeds on refi loans were significantly faster for loans originated by non-bank originators (blue and green) versus those originated by banks (red and orange). Speeds on purchase loans were only 1-2 CPR faster for non-banks versus banks and were omitted from this graph for readability.

In the current geopolitical climate, rates may continue to drop over the short term. But given the Fed’s tightening bias, it’s prudent to consider extension risk when looking at MBS pools, in both specified and non-specified pools.

[1] For investors interested in GNMA analysis, please contact RiskSpan

EDGE: The Fed’s MBS, Distribution and Prepayments

Since the Great Financial Crisis of 2008, the Federal Reserve Bank of New York has been the largest and most influential participant in the mortgage-backed securities market. In the past 14 years, the Fed’s holdings of conventional and GNMA pools has grown from zero to $2.7 trillion, representing roughly a third of the outstanding market. With inflation spiking, the Fed has announced an end to MBS purchases and will shift into balance-sheet-reduction mode. In this short post, we review the Fed’s holdings, their distribution across coupon and vintage, and their potential paydowns as rates rise.

The New York Fed publishes its pool holdings here. The pools are updated weekly and have been loaded into RiskSpan’s Edge Platform. The chart below summarizes the Fed’s 30yr Fannie/Freddie holdings by vintage and net coupon.


We further categorize the Fed’s holdings by vintage and borrower note rate (gross WAC) at the loan level. Using loan-level data (rather than weighted-average statistics published on Fed-held Supers or their constituent pools [1]) provides a more accurate view of the Fed’s distribution of note rates and hence prepayment exposure.

Not surprisingly, the recent and largest quantitative easing has left the Fed holding MBS with gross WACs below the current mortgage rate. Roughly 85% of the mortgages held by the Fed are out-of-the-money, and the remaining in-the-money mortgages are several years seasoned. These older pools are beginning to exhibit burnout, with the sizable refinancing wave over the last two years having limited these moderately seasoned loans mainly to borrowers who are less reactive to savings from refinancing.

With most of the Fed’s portfolio at below-market rates and the remaining MBS moderately burned out, market participants expect the Fed’s MBS runoff to continue to slow. At current rates, we estimate that Fed paydowns will continue to decline and stabilize around $25B per month in the second quarter, just shy of 1% of its current MBS holdings.

With these low levels of paydowns, we anticipate the Fed will need to sell MBS if they want to make any sizable reduction in their balance sheet. Whether the Fed feels compelled to do this, or in what manner sales will occur, is an unsettled question. But paydowns alone will not significantly reduce the Fed’s holdings of MBS over the near term.

[1] FNMA publishes loan-level data for pools securitized in 2013 onward. For Fed holdings that were securitized before 2013, we used FNMA pool data.  

EDGE: Measuring the Potential for Another Cash-out Refi Wave

With significant home price gains over the last two years, U.S. homeowners are sitting on vast, mostly untapped wealth. Nationally, home prices are up an aggregate of 28% over the last two years, with some regions performing even better. But unlike other periods of strong home price gains, cash-out refinancings lagged overall refinancings during the pandemic rate-rally. In this short article, we look at cash-out refinancings over time, and their potential impact on prepayments, especially on discount cohorts.

A historical perspective

In the early 2000s, mortgage rates fell nearly 200bp, triggering a massive refinancing wave as well as a rally in home prices that lasted well into 2005.

During this early millennium rally, the market saw significant cash-out refi activity with homeowners borrowing at then-historically low rates to free up cash. The market even saw refinancing activity in mortgages with note rates below the prevailing market rate. In 2002, CPRs on some discount cohorts hit the low to middle teens, which many participants attributed to cash-out refinancing. Resetting a mortgage 50 basis points higher can nevertheless often lead to overall lower debt servicing when borrowers use cash-out refis to consolidate auto loans, credit cards and other higher-rate unsecured borrowings.[1] In the early 2000s, this cash-out refinancing activity led to overall faster speeds and a higher S-curve for out-of-the-money cohorts. How does 2002-03 cash-out refi activity compare to today? In the early 2000s, issuance of cash-out mortgages, as a percentage of the total market, varied between 1% and 2.5% of the outstanding mortgage universe each month.


Since the onset of the pandemic, that figure has not experienced the same kind of spike, hovering around just 0.9%.[2]

In 2002-03, most of these cash-out borrowers refinanced into lower rates, but a sufficient number took out mortgages at same or higher rates to drive prepayments on discount MBS into the low teens CPR (see black s-curve below). By comparison, out-of-the money speeds today (the blue s-curve) are approximately 4 CPR slower.

The nearly 30% rally in home prices during the pandemic has further strengthened a solid housing market. Today’s borrowers have substantial equity in their homes, leaving many homeowners with untapped borrowing power, shown in the market-implied LTVs below. From an origination standpoint, mortgage lenders have sufficient capacity to support any uptick in cash-out refinancing as rate-term refinancing volumes decline.

Any growth in cash-out refi issuance is likely to come on loans with note rates close to the prevailing mortgage rate. If a homeowner needs to generate cash for a large purchase, it can make economic sense to refinance an existing loan into a new loan with rates as much as 25bp or 50bp higher, rather than incur even higher (and shorter-term) interest rates on credit cards or personal loans. Therefore, any uptick in cash-out refinancing will likely have a larger effect on prepayment speeds for MBS that are either at-the-money or slightly out-of-the-money. This uptick may mitigate some of the extension risk in near-discount mortgages, especially in non-spec cohorts where refinancing frictions are lower. While the past two years have seen substantial changes, positive and negative, in overall refinancings, cash-out refis have largely not followed suit. But a significant home price rally, coupled with strong economic activity and excess originator capacity, could change that trend in the upcoming year.

EDGE: Extended Delinquencies in Loan Balance Stories

In June, we highlighted Fannie Mae’s and Freddie Mac’s new “expanded delinquency” states. The Enterprises are now reporting delinquency states from 1 to 24 months to better account for loans that are seriously delinquent and not repurchased under the extended timeframe for repurchase of delinquent loans announced in 2020.

This new data reveals a strong correlation between loan balance and “chronically delinquent” loans. In the graph below, we chart loan balance on the x-axis and 180+Day delinquency on the y-axis, for 2017-18 production 30yr 3.5s through 4.5 “generic” borrowers.[1]

As the graph shows, within a given coupon, loans with larger original balances also tended to have higher “chronic delinquencies.

The graph above also illustrates a clear correlation between higher chronic delinquencies and higher coupons. This phenomenon is most likely due to SATO. While each of these queries excluded low-FICO, high-LTV, and NY loans, the 2017-18 30yr 3.5 cohort was mostly at-the-money origination, whereas 4.0s and 4.5s had an average SATO of 30bp and 67bp respectively. The higher SATO indicates a residual credit quality issue. As one would expect, and we demonstrated in our June analysis, lower-credit-quality loans tend also to have higher chronic delinquencies.

The first effect – higher chronic delinquencies among larger loans within a coupon – is more challenging to understand. We posit that this effect is likely due to survivor bias. The large refi wave over the last 18 months has factored-down higher-balance cohorts significantly more than lower-balance cohorts.

Higher-credit-quality borrowers tend to refinance more readily than lower-credit-quality borrowers, and because the larger-loan-balance cohorts have seen higher total prepayments, these same cohorts are left with a larger residue of lower-quality credits. The impact of natural credit migration (which is observed in all cohorts) tends to leave behind a larger proportion of credit-impaired borrowers in faster-paying cohorts versus the slower-paying, lower-loan-balance cohorts.

The higher chronic delinquencies in larger-loan-balance cohorts may ultimately lead to higher buyouts, depending on the resolution path taken. As loan balance decreases, the lower balance cohorts will have reduced risk to these potential buyouts, leaving them better protected to any uptick in involuntary speeds.

Contact us if you are interested in seeing variations on this theme. Using Edge, we can examine any loan characteristic and generate a S-curve, aging curve, or time series.

[1] We filtered for borrowers with LTV<=80, FICO>=700, and ex-NY. We chose 2017-18 production to analyze, to give sufficient time for loans to go chronically delinquent. We see a similar relationship in 2019 production, see RiskSpan for details.

EDGE: Extended Delinquencies in FNMA and FHLMC Loans

In June, the market got its first look at Fannie Mae and Freddie Mac “expanded delinquency” states. The Enterprises are now reporting delinquency states out to 24 months to better account for loans that are seriously delinquent and not repurchased under the extended timeframe for repurchase of delinquent loans announced in 2020. In this short post, we analyze those pipelines and what they could mean for buyouts in certain spec pool stories. 

First, we look at the extended pipeline for some recent non-spec cohorts. The table below summarizes some major 30yr cohorts and their months delinquent. We aggregate the delinquencies that are more than 6 months delinquent[1] for ease of exposition. 

Recent-vintage GSE loans with higher coupons show a higher level of “chronically delinquent” loans, similar to the trends we see in GNMA loans. 

Digging deeper, we filtered for loans with FICO scores below 680. Chronically delinquent loan buckets in this cohort are marginally more prevalent relative to non-spec borrowers. Not unexpectedly, this suggests a credit component to these delinquencies.

Finally, we filtered for loans with high LTVs at origination. The chronically delinquent buckets are lower than the low FICO sector but still present an overhang of potential GSE repurchases in spec pools.

It remains to be seen whether some of these borrowers will be able to resume their original payments —  in which case they can remain in the pool with a forbearance payment due at payoff — or if the loans will be repurchased by the GSEs at 24 months delinquent for modification or other workout. If the higher delinquencies lead to the second outcome, the market could see an uptick in involuntary speeds on some spec pool categories in the next 6-12 months.

Contact us if you are interested in seeing variations on this theme. Using Edge, we can examine any loan characteristic and generate a S-curve, aging curve, or time series.

[1] The individual delinquency states are available for each bucket, contact us for details.

EDGE: New Forbearance Data in Agency MBS

Over the course of 2020 and into early 2021, the mortgage market has seen significant changes driven by the COVID pandemic. Novel programs, ranging from foreclosure moratoriums to payment deferrals and forbearance of those payments, have changed the near-term landscape of the market.

In the past three months, Fannie Mae and Freddie Mac have released several new loan-level credit statistics to address these novel developments. Some of these new fields are directly related to forbearance granted during the pandemic, while others address credit performance more broadly.

We summarize these new fields in the table below. These fields are all available in the Edge Platform for users to query on.

The data on delinquencies and forbearance plans covers March 2021 only, which we summarize below, first by cohort and then by major servicer. Edge users can generate other cuts using these new filters or by running the “Expanded Output” for the March 2021 factor date.

In the first table, we show loan-level delinquency for each “Assistance Plan.” Approximately 3.5% of the outstanding GSE universe is in some kind of Assistance Plan.

In the following table, we summarize delinquency by coupon and vintage for 30yr TBA-eligible pools. Similar to delinquencies in GNMA, recent-vintage 3.5% and 4.5% carry the largest delinquency load.

Many of the loans that are 90-day and 120+-day delinquent also carry a payment forbearance. Edge users can simultaneously filter for 90+-day delinquency and forbearance status to quantify the amount of seriously delinquent loans that also carry a forbearance versus loans with no workout plan.[2]  Finally, we summarize delinquencies by servicer. Notably, Lakeview and Wells leads major servicers with 3.5% and 3.3% of their loans 120+-day delinquent, respectively. Similar to the cohort analysis above, many of these seriously delinquent loans are also in forbearance. A summary is available on request.

In addition to delinquency, the Enterprises provide other novel performance data, including a loan’s total payment deferral amount. The GSEs started providing this data in December, and we now have sufficient data to start to observing prepayment behavior for different levels of deferral amounts. Not surprisingly, loans with a payment deferral prepay more slowly than loans with no deferral, after controlling for age, loan balance, LTV, and FICO. When fully in the money, loans with a deferral paid 10-13 CPR slower than comparable loans.

Next, we separate loans by the amount of payment deferral they have. After grouping loans by their percentage deferral amount, we observe that deferral amount produces a non-linear response to prepayment behavior, holding other borrower attributes constant.

Loans with deferral amounts less than 2% of their UPB showed almost no prepayment protection when deep in-the-money.[3] Loans between 2% and 4% deferral offered 10-15 CPR protection, and loans with 4-6% of UPB in deferral offered a 40 CPR slowdown.

Note that as deferral amount increases, the data points with lower refi incentive disappear. Since deferral data has existed for only the past few months, when 30yr primary rates were in a tight range near 2.75%, that implies that higher-deferral loans also have higher note rates. In this analysis, we filtered for loans that were no older than 48 months, meaning that loans with the biggest slowdown were typically 2017-2018 vintage 3.5s through 4.5s.

Many of the loans with P&I deferral are also in a forbearance plan. Once in forbearance, these large deferrals may act to limit refinancings, as interest does not accrue on the forborne amount. Refinancing would require this amount to be repaid and rolled into the new loan amount, thus increasing the amount on which the borrower is incurring interest charges. A significantly lower interest rate may make refinancing advantageous to the borrower anyway, but the extra interest on the previously forborne amount will be a drag on the refi savings.

Deferral and forbearance rates vary widely from servicer to servicer. For example, about a third of seriously delinquent loans serviced by New Residential and Matrix had no forbearance plan, whereas more than 95% of such loans serviced by Quicken loans were in a forbearance plan. This matters because loans without a forbearance plan may ultimately be more subject to repurchase and modification, leading to a rise in involuntary prepayments on this subset of loans.

As the economy recovers and borrowers increasingly resolve deferred payments, tracking behavior due to forbearance and other workout programs will help investors better estimate prepayment risk, both due to slower prepays as well as possible future upticks in buyouts of delinquent loans.

Contact us if you are interested in seeing variations on this theme. Using Edge, we can examine any loan characteristic and generate a S-curve, aging curve, or time series.

[1] A link to the Deferral Amount announcement can be found here, and a link to the Forbearance and Delinquency announcement can be found here. Freddie Mac offers a helpful FAQ here on the programs.

[2] Contact RiskSpan for details on how to run this query.

[3] For context, a payment deferral of 2% represents roughly 5 months of missed P&I payments on a 3% 30yr mortgage.

EDGE: An Update on GNMA Delinquencies

In this short post, we update the state of delinquencies for GNMA multi-lender cohorts, by vintage and coupon. As the Ginnie market has shifted away from bank servicers, non-bank servicers now account for more than 75% of GNMA servicing, and even higher percentages in recent-vintage cohorts.  

The table below summarizes delinquencies for GN2 cohorts where outstanding balance is greater than $10 billion. The table also highlights, in red, cohorts where delinquencies are more than 85% attributable to non-bank servicersThat non-banks are servicing so many delinquencies is not surprising given the historical reluctance (or inability)of these servicers to repurchase delinquent mortgages out of pools (see our recent analysis on this here). This is contributing to an extreme overhang of non-bankserviced delinquencies in recent-vintage GNMA cohorts. 

The 60-day+ delinquencies for 2018 GN2 3.5s get honorable mention, with the non-bank delinquencies totaling 84% of all delinquencies, just below our 85% threshold. At the upper end, delinquencies in 2017 30yr 4s were 93% attributable to non-bank servicers, and they serviced nearly 90% of 2019 delinquencies across all coupons.

The delinquencies in this analysis are predominantly loans that are six-months or more delinquent and in COVID forbearance.[1] Current guidance from GNMA gives servicers the latitude to leave these loans in pools without exceeding their seriously delinquent threshold.[2] However, as noted in our previous research, several non-bank servicers have started to increase their buyout activity, driven by joint-ventures with GNMA EBO investors and combined with a premium bid for reperforming GNMA RG pools. While we saw a modest pullback in recent buyout activity from Lakeview,[3] which has been at the vanguard of the activity, the positive economics of the trade indicates that we will likely see continued increases in repurchases, with 2018-19 production premiums bearing the brunt of involuntary speed increases.

Contact us if you are interested in seeing variations on this theme. Using Edge, we can examine any loan characteristic and generate a S-curve, aging curve, or time series.

[1] Breakdown of delinquencies available on request.

[2] GNMA APM 2020-17 extended to July 31st the exemption of counting post-COVID delinquencies as part of the servicer’s Seriously Delinquent count.

[3] Lakeview repurchased 15% of seriously delinquent loans in January, down from 22% in December. Penny Mac and Carrington continued their repurchases at their recent pace.

Get Started
Get A Demo