Get Started
Get a Demo
Articles Tagged with: Independent Mortgage Banks

Why Climate Risk Matters for Mortgage Loan & MSR Investors 

The time has come for mortgage investors to start paying attention to climate risk.

Until recently, mortgage loan and MSR investors felt that they were largely insulated from climate risk. Notwithstanding the inherent risk natural hazard events pose to housing and the anticipated increased frequency of these events due to climate change, it seemed safe to assume that property insurers and other parties in higher loss position were bearing those risks. 

In reality, these risks are often underinsured. And even in cases where property insurance is adequate, the fallout has the potential to hit investor cash flows in a variety of ways. Acute climate events like hurricanes create short-term delinquency and prepayment spikes in affected areas. Chronic risks such as sea level rise and increased wildfire risk can depress housing values in areas most susceptible to these events. Potential impacts to property insurance costs, utility costs (water and electricity in areas prone to excessive heat and drought, for example) and property taxes used to fund climate-mitigating infrastructure projects all contribute to uncertainty in loan and MSR modeling. 

Moreover, dismissing climate risk “because we are in fourth loss position” should be antithetical to any investor claiming to espouse ESG principles. After all, consider who is almost always in the first loan position – the borrower. Any mortgage investment strategy purporting to be ESG friendly must necessarily take borrower welfare into account. Dismissing climate risk because borrowers will bear most of the impact is hardly a socially responsible mindset. This is particularly true when a disproportionate number of borrowers prone to natural hazard risk are disadvantaged to begin with. 

Hazard and flood insurers typically occupy the loss positions between borrowers and investors. Few tears are shed when insurers absorb losses. But society at large ultimately pays the price when losses invariably lead to higher premiums for everybody.    

Evaluating Climate Exposure

For these and other reasons, natural hazards pose a systemic risk to the entire housing system. For mortgage loan and MSR investors, it raises a host of questions. Among them: 

  1. What percentage of the loans in my portfolio are susceptible to flood risk but uninsured because flood maps are out of date? 
  2. How geographically concentrated is my portfolio? What percentage of my portfolio is at risk of being adversely impacted by just one or two extreme events? 
  3. What would the true valuation of my servicing portfolio be if climate risk were factored into the modeling?  
  4. What will the regulatory landscape look like in coming years? To what extent will I be required to disclose the extent to which my portfolio is exposed to climate risk? Will I even know how to compute it, and if so, what will it mean for my balance sheet? 

 

Incorporating Climate Data into Investment Decision Making

Forward-thinking mortgage servicers are at the forefront of efforts to get their arms around the necessary data and analytics. Once servicers have acquired a portfolio, they assess and triage their loans to identify which properties are at greatest risk. Servicers also contemplate how to work with borrowers to mitigate their risk.  

For investors seeking to purchase MSR portfolios, climate assessment is making its way into the due diligence process. This helps would-be investors ensure that they are not falling victim to adverse selection. As investors increasingly do this, climate assessment will eventually make its way further upstream, into appraisal and underwriting processes. 

Reliably modeling climate risk first requires getting a handle on how frequently natural hazard events are likely to occur and how severe they are likely to be. 

In a recent virtual industrial roundtable co-hosted by RiskSpan and Housing Finance Strategies, representatives of Freddie Mac, Mr. Cooper, and Verisk Analytics (a leading data and analytics firm that models a wide range of natural and man-made perils) gathered to discuss why understanding climate risk should be top of mind for mortgage investors and introduced a framework for approaching it. 

WATCH THE ENTIRE ROUNDTABLE

Building the Framework

The framework begins by identifying the specific hazards relevant to individual properties, building simulated catalogs of thousands of years worth of simulated events, computing likely events simulating damage based on property construction and calculating likely losses. These forecasted property losses are then factored into mortgage performance scenarios and used to model default risk, prepayment speeds and home price impacts. 

 

Responsibility to Borrowers

One member of the panel, Kurt Johnson, CRO of mega-servicer Mr. Cooper, spoke specifically of the operational complexities presented by climate risk. He cited as one example the need to speak daily with borrowers as catastrophic events are increasingly impacting borrowers in ways for which they were not adequately prepared. He also referred to the increasing number of borrowers incurring flood damage in areas that do not require flood insurance and spoke to how critical it is for servicers to know how many of their borrowers are in a similar position.

Johnson likened the concept of credit risk layering to climate risk exposure. The risk of one event happening on the heels of another event can cause the second event to be more devastating than it would have been had it occurred in a vacuum. As an example, he mentioned how the spike in delinquencies at the beginning of the covid pandemic was twice as large among borrowers who had just recovered from Hurricane Harvey 15 months earlier than it was among borrowers who had not been affected by the storm. He spoke of the responsibility he feels as a servicer to educate borrowers about what they can do to protect their properties in adverse scenarios.


Top 10 National Mortgage Servicer: MSR Pricing Model Review, Analysis and Enhancements

One of the nation’s leading mortgage lenders had recently acquired several large MSR portfolios and required assistance reviewing, documenting and recommending enhancements to the underlying assumptions of the model used to price the MSR portfolios at acquisition.

Requiring review and documentation included collateral assumptions, cost and revenue assumptions, and prepayment (CDR/CRR/CPR) assumptions.

The Solution

RiskSpan comprehensively analyzed the cash flow impact of each major assumption (e.g., CDR/CRR/CPR, servicing advances, fees, cost) — the collateral assumptions in the model as well as documented forecast vs. actual outcomes.

RiskSpan worked in concert with the servicer’s finance and pricing teams to collect and analyze roll rates and to forecast actual loan-level data around losses, servicing advances, servicing fees, ancillary fees, PIF, and scheduled principal payments.  

Deliverables 

A comprehensive pricing model validation report that included the following:

  • Consolidated CDR-, CRR-, CPR-related pricing model data, including balance, delinquency status, recapture, scheduled payments, default, etc. for all acquired portfolios. The resulting dataset could be used both for deal tracking and pricing model validation 
  • Documentation of the calculation and location of pricing model fields.
  • Reconciliation of the different methods for calculating CDR, CRR, and CPR.
  • Deep dives into model predictions of short sales and foreclosure turn-times
  • Loan-state transition model forecasts and comparison of the model variables between two version of the forecast, including shift analyses.
  • Drivers of forecast variance. 
  • Identification of dials responsible for short sale and foreclosure turn forecast shifting.
  • SAS-based streamlined process for comparing model variables for sub-segment and sub-models in loan state
  • Transition Model:  Incorporation of actual and forecast into pricing models to compare with original pricing model cash flow results for acquired portfolios
  • Creation and standardization of the pricing model validation report output.
  • Automation of reporting.  
  • Improvement of the process by creating a calculation template that could be easily replicated for other portfolios. 
  • Documentation of the validation process and comprehensive review of the validation results with the servicer’s risk team, finance team and pricing team management.

Residential Mortgage REIT: End to End Loan Data Management and Analytics

An inflexible, locally installed risk management system with dated technology required a large IT staff to support it and was incurring high internal maintenance costs.

Absent a single solution, the use of multiple vendors for pricing and risk analytics, prepay/credit models and data storage created inefficiencies in workflow and an administrative burden to maintain.

Inconsistent data and QC across the various sources was also creating a number of data integrity issues.

The Solution

An end-to-end data and risk management solution. The REIT implemented RiskSpan’s Edge Platform, which provides value, cost and operational efficiencies.

  • Scalable, cloud-native technology
  • Increased flexibility to run analytics at loan level; additional interactive / ad-hoc analytics
  • Reliable, accurate data with more frequent updates

Deliverables 

Consolidating from five vendors down to a single platform enabled the REIT to streamline workflows and automate processes, resulting in a 32% annual cost savings and 46% fewer resources required for maintenance.


GSE: Earnings Forecasting Framework Development

A $100+ billion government-sponsored enterprise with more than $3 trillion in assets sought to develop an end-to-end earnings forecast framework to project and stress-test the future performance of its loan portfolio. The comprehensive framework needed to draw data from a combination of unintegrated systems to compute earnings, capital management requirements and other ad hoc reporting under a variety of internal and regulatory (i.e., DFAST) stress scenarios. 

Computing the required metrics required cross-functional team coordination, proper data governance, and a reliable audit trail, all of which were posing a challenge.  

The Solution

RiskSpan addressed these needs via three interdependent workstreams: 

Data Preparation

RiskSpan consolidated multiple data sources required by the earnings forecast framework. These included: 

  • Macroeconomic drivers, including interest rates and unemployment rate 
  • Book profile, including up-to-date snapshots of the portfolio’s performance data 
  • Modeling assumptions, including portfolio performance history and other asset characteristics 

Model Simulation

Because the portfolio in question consisted principally of mortgage assets, RiskSpan incorporated more than 20 models into the framework, including (among others): 

  • Prepayment Model 
  • Default Model 
  • Delinquency Model 
  • Acquisition Model: Future loans 
  • Severity Model  
  • Cash Flow Model 

Business Calculations and Reporting

Using the data and models above, RiskSpan incorporated the following outputs into the earnings forecast framework: 

  • Non-performing asset treatment 
  • When to charge-off delinquent loans 
  • Projected loan losses under FAS114/CECL  
  • Revenue Forecasts 
  • Capital Forecast 

Client Benefits

The earnings forecast framework RiskSpan developed represented a significant improvement over the client’s previous system of disconnected data, unintegrated models, and error-prone workarounds. Benefits of the new system included:  

  • User Interface – Improved process for managing loan lifecycles and GUI-based process execution  
  • Data Lineage – Implemented necessary constraints to ensure forecasting processes are executed in sequence and are repeatable. Created a predefined, dynamic output lineage tree (UI-accessible) to build robust data flow sequence used to facilitate what-if scenario analysis. 
  • Run Management – Assigned a unique run ID to every execution to ensure individual users across the institution can track and reuse execution results 
  • Audit Trail – Designed logging of forecasting run details to trace attributes such as version changes (Version control system – GIT, SVN), timestamp, run owner, and inputs used (MySQL/Oracle Databases for logging)  
  • Identity Access Management – User IDs and access is now managed administratively. Metadata is captured via user actions through the framework for audit purposes. Role-based restrictions now ensure data and forecasting features are limited to only those who require such permissions 
  • Golden Configuration – Implemented execution-specific parameters passed to models during runtime. These parameters are stored, enabling any past model result to be reproduced if needed 
  • Data Masking – Encrypted personally identifiable information at-rest and in transit 
  • Data Management – Execution logs and model/report outputs are stored to the database and file systems 
  • Comprehensive User and Technical Documentation – RiskSpan created audit-ready documentation tied to logic changes and execution. This included source-to-target mapping documentation and enterprise-grade catalogs and data dictionaries. Documentation also included: 
      • Vision Document 
      • User Guides 
      • Testing Evidence 
      • Feature Traceability Matrix 

Get Started
Get A Demo