Get Started
Get a Demo
Articles Tagged with: RS Edge

FHFA Prepayment Monitoring Reports (Q1 2022) Powered by RiskSpan’s Edge Platform

To help enforce alignment of Agency prepayments across Fannie’s and Freddie’s Uniform MBS, the Federal Housing Finance Agency publishes a quarterly monitoring report. This report compares prepayment speeds of UMBS issued by the two Agencies. The objective is to help ensure that prepayment performance remains consistent. This consistency ensures that market expectations of a Fannie-issued UMBS are fundamentally indistinguishable from those of a Freddie-issued UMBS. The two Agencies’ UMBS should be interchangeably deliverable into passthrough “TBA” trades.

This week, the FHFA released the Q1 2022 version of this report. The charts in the FHFA’s publication, which it generates using RiskSpan’s Edge Platform, compare Fannie and Freddie UMBS prepayment rates (1-month and 3-month CPRs) across a variety of coupons and vintages.

Relying on RiskSpan’s Edge Platform for this sort of analysis is fitting in that it is precisely the type of comparative analysis for which Edge was developed.

Edge allows traders, portfolio managers, and analysts to compare performance across a virtually unlimited number of loan subgroups. Users can cohort on multiple loan characteristics, including servicer, vintage, loan size, geography, LTV, FICO, channel, or any other borrower characteristic.

Edge’s easy-to-navigate user interface makes it accessible to traders and PMs seeking to set up queries and tweak constraints on the fly without having to write SQL code. Edge also offers an API for users that want programmatic access to the data. This is useful for generating customized reporting and systematic analysis of loan sectors.

Comparing Fannie’s and Freddie’s prepay speeds only scratches the surface of Edge’s analytical capabilities. Schedule a demo to see more of what the platform can do.

SPEAK TO AN EXPERT

Recent Edge Platform Updates

Edge Platform Updates


MSR Engine

The Platform’s extensive library of available MSR analytic outputs has been expanded to include Effective Recapture Rate and other Income and Expense fields.

Base servicing cost inputs for MSR assumptions have also been enhanced.


LOANS

The ETL tool for loan onboarding has been further enhanced with machine learning capabilities.

New fields for querying options and enhanced segmentation have been added. And SOFRWalSpread and SOFRSpotSpread are now captured in static analysis output.


HISTORICAL PERFORMANCE

Special Eligibility Program fields have been added to Fannie and Freddie pool data outputs along with a complementing SpecialProgram100 filter

Fannie and Freddie datasets now include CBR and CPR metrics (previously only available for Ginnies).

New support has been added for saving CoreLogic LLD queries with complement filters.

Enhanced historical date-based queries in Edge Perspective (e.g., option to run and save queries with relative factor dates rather than specifically coded date.


GET A DEMO

EDGE: Cash-Out Refi Speeds 

Mortgage rates have risen nearly 200bp from the final quarter of 2021, squelching the most recent refinancing wave and leaving the majority of mortgage holders with rates below the prevailing rate of roughly 5% (see chart below). For most homeowners, it no longer makes sense to refinance an existing 30yr mortgage into another 30yr mortgage.

GET STARTED

But, as we noted back in February, the rapid rise in home prices has left nearly all households with significant, untapped gains in their household balance sheets. For homeowners with consumer debt at significantly higher rates than today’s mortgage rates, it can make economic sense to consolidate debt using a cash-out refi loan against their primary residence. As we saw during 2002-2003, cash-out refinancing can drive speeds on discount mortgages significantly higher than turnover alone. Homeowners can also become “serial cash-out refinancers,” tapping additional equity multiple times.  

In this analysis, we review prepayment speeds on cash-out refis, focusing on discount MBS, i.e., mortgages whose note rates are equal to or below today’s prevailing rates. 

The volume of cash-out refis has grown steadily but modestly since the start of the pandemic, whereas rate/term refis surged and fell dramatically in response to changing interest rates. Despite rising rates, the substantial run-up in home prices and increased staffing at originators from the recent refi boom has left the market ripe for stronger cash-out activity. 

The pivot to cash-out issuance is evidenced by the chart below, illustrating how the issuance of cash-out refi loans (the black line below) in the first quarter of this year was comparable with issuance in the summer of 2021, when rates near historic lows, while rate/term refis (blue line) have plunged over the same period. 

With cash-out activity set to account for a larger share of the mortgage market, we thought it worthwhile to compare some recent cash-out activity trends. For this analysis, the graphs consist of truncated S-curves, showing only the left-hand (out-of-the-money) side of the curve to focus on discount mortgage behavior in a rising rate environment where activity is more likely to be influenced by serial cash-out activity. 

This first chart compares recent performance of out-of-the money mortgages by loan purpose, comparing speeds for purchase loans (black) with both cash-out refis (blue) and rate/term refis (green). Notably, cash-out refis offer 1-2 CPR upside over rate/term refis, only converging to no cash out refis when 100bp out of the money.[1] 

Next, we compare cash-out speeds by servicer type, grouping mortgages that are serviced by banks (blue) versus mortgages serviced by non-bank servicers (green). Non-bank servicers produce significantly faster prepay speeds, an advantage over bank-serviced loans for MBS priced at a discount. 

Finally, we drill deeper into the faster non-bank-serviced discount speeds for cash-out refis. This chart isolates Quicken (red) from other non-bank servicers (green). While Quicken’s speeds converge with those of other non-banks at the money, Quicken-serviced cash-out refis are substantially faster when out of the money than both their non-bank counterparts and the cash-out universe as a whole.[2]

SCHEDULE A DEMO

We suspect the faster out-of-the-money speeds are being driven by serial cash-out behavior, with one servicer in particular (Quicken) encouraging current mortgage holders to tap home equity as housing prices continue to rise. 

This analysis illustrates how pools with the highest concentration of Quicken-serviced cash-out loans may produce substantially higher out-of-the-money speeds relative to the universe of non-spec pools. To find such pools, users can enter a list of pools into the Edge platform and simultaneously filter for both Quicken and cash-out refi. The resultant query will show each pool’s UPB for this combination of characteristics. 

Contact US to run this or any query


EDGE: Recent Performance of GNMA RG Pools

In early 2021, GNMA began issuing a new class of custom pools with prefix “RG.” These pools are re-securitizations of previously delinquent loans which were repurchased from pools during the pandemic.[1] Loans in these pools are unmodified, keeping the original rate and term of the mortgage note. In the analysis below, we review the recent performance of these pools at loan-level detail. The first RG pools were issued in February 2021, growing steadily to an average rate of $2B per month from Q2 onward, with a total outstanding of $21 billion. 

 
LEARN MORE ABOUT RISKSPAN'S EDGE PLATFORM

The majority of RG issuance has included loans that are two to seven years seasoned and represent a consistent 2-3% of the total GNMA market for those vintages, dashed line below.

Coupons of RG pools are primarily concentrated between 3.0s through 4.5s, with the top-10 Issuers of RG pools account for nearly 90% of the issuance.

Below, we compare speeds on GNMA RG pools under various conditions. First, we compare speeds on loans in RG pools (black) versus same-age multi-lender pools (red) over the last twelve months. When out of the money, RG pools are 4-5 CPR slower than comparably aged multi-lender pools but provide a significantly flatter S-curve when in-the-money.

Next, we plot the S-curve for all GNMA RG loans with overlays for loans that are serviced by banks (green) and non-banks (blue). Bank-serviced RG loans prepay significantly slower than non-banks by an average of 9 CPR weighted across all incentives. Further, this difference is caused by voluntary prepays, with buyouts averaging a steady 4% CBR, plus or minus 1 CBR, for both banks and non-banks with no discernable difference between the two (second graph).

Finally, we analyzed the loan-level transition matrix by following each RG loan through its various delinquency states over the past year. We note that the transition rate from Current to 30-day delinquent for RG loans is 1.6%, only marginally worse than that of the entire universe of GNMA loans at 1.1%. RG loans transitioned back from 30->Current at similar rates to the wider Ginnie universe (32.3%) and the 30->60 transition rate for RG loans was marginally worse than the Ginnie universe, 30.8% versus  24.0%.[2]

Monthly Transition Rates for Loans in GNMA RG Pools: In summary, loans in RG pools have shown a substantial level of voluntary prepayments and comparatively low buyouts, somewhat unexpected especially in light of their recent delinquency. Further, their overall transition rates to higher delinquency states, while greater than the GNMA universe, is markedly better than that of reperforming loans just prior to the outbreak of COVID.

SCHEDULE A DEMO


RS Edge Platform Implementation Streamlined Processes Reducing Client Resource Support Needs by 46%-VERSION 2

Asset Manager | New York, NY

RiskSpan Applications Provided

MARKET RISK ANALYTICS

MODELS & FORECASTING

MODEL VALIDATION

GOVERNANCE

ABOUT THE CLIENT

A leading provider of capital and services to the mortgage and financial services industries that leverage their proven investment expertise and identity and invest in assets that offer attractive risk-adjusted returns while also protecting our existing portfolio and generating long-term value for our investors.


PROBLEM

An asset manager sought to replace an inflexible risk system provided by a Wall Street dealer. ​The portfolio was diverse, with a sizable concentration in structured securities and mortgage assets. ​

The legacy analytics system was rigid with no flexibility to vary scenarios or critical investor and regulatory reporting.


CHALLENGE

Lacked a single-solution

Data integrity issues

Inflexible locally installed risk management system

No direct connectivity to downstream systems

Models + Data management = End-to-end Managed Process


HIGHLIGHTS

GET STARTED

5 Vendors → Single Platform

32% Annual Cost Savings

Private Label SecuritiesIncreased Flexibility

Additional

DOWNLOAD CASE STUDY


SOLUTION

RiskSpan’s Edge Platform delivered a cost-efficient and flexible solution by bundling required data feeds, predictive models for mortgage and structured products, and infrastructure management. ​

The Platform manages and validates the asset manager’s third-party and portfolio data and produces scenario analytics in a secure hosted environment.


TESTIMONIAL

”Our existing daily process for calculating, validating, and reporting on key market and credit risk metrics required significant manual work… [Edge] gets us to the answers faster, putting us in a better position to identify exposures and address potential problems.” 

          — Managing Director, Securitized Products


EDGE PROVIDED

END-TO-END DATA AND RISK MANAGEMENT PLATFORM 

  • Scalable, cloud native technology
  • Increased flexibility to run analytics at loan level; additional interactive / ad-hoc analytics
  • Reliable accurate data with frequent updates

COST AND OPERATIONAL EFFICIENCIES GAINED

  • Streamlined workflows | Automated processes
  • 32% annual cost savings
  • 46% fewer resources needed for maintenance
  •  


EDGE: Extension Protection in a Rising Rate Environment

With the Fed starting their tightening cycle and reducing balance sheet, mortgage rates have begun rising. Since late summer, 30-year conforming rates have risen more than 100bp, with 75bp of that occurring since the end of December. The recent flight-to-quality rally has temporarily eased that, but the overall trend remains in place for higher mortgage rates.

With this pivot, mortgage investors have switched from focusing on prepayment protection to mitigating extension risk. In this post, we offer analysis on extension risk and turnover speeds for various out-of-the-money Fannie and Freddie cohorts.[1]

In the chart below, we first focus on out-of-the-money prepays on lower loan balance loans. For this analysis, we analyzed speeds on loans that were 24 to 48 months seasoned. We further grouped the loan balance stories into meta-groups, as the traditional groupings of “85k-Max”, etc, showed little difference in out-of-the-money speeds. When compared to loans with balances above 250k, speeds on lower loan balance loans were a scant 1-2 CPR faster than borrowers with larger loan balances, when prevailing rates were 25bp to 100bp higher than the borrower’s note rate.

We next compare borrowers in low FICO pools, high LTV pools, and 100% investor pools. Speeds on low-FICO pools (blue) offer some extension protection due to higher involuntary speeds. At the other end, loans in 100% investor pools were dramatically slower than non-spec pools when out-of-the money.

Finally, we look at the behavior of borrowers in non-spec pools segregated by loan purpose, again controlling for loan age. Borrowers with refi loans pay significantly faster than purchase loans when only slightly out-of-the money. As rates continue to rise, refi speeds converge to purchase loans at 75bp out of the money and pay slower when 75-100bp out of the money, presumably due to a stronger lock-in effect.

REQUEST A DEMO OF EDGE

We also separated these non-spec borrowers by originators, grouping the largest banks and non-bank originators together. Out-of-the-money speeds on refi loans were significantly faster for loans originated by non-bank originators (blue and green) versus those originated by banks (red and orange). Speeds on purchase loans were only 1-2 CPR faster for non-banks versus banks and were omitted from this graph for readability.

In the current geopolitical climate, rates may continue to drop over the short term. But given the Fed’s tightening bias, it’s prudent to consider extension risk when looking at MBS pools, in both specified and non-specified pools.

[1] For investors interested in GNMA analysis, please contact RiskSpan


RS Edge Platform Implementation Streamlined Processes Reducing Client Resource Support Needs by 46%-VERSION 1

 

AT-A-GLANCE

An asset manager sought to replace an inflexible risk system provided by a Wall Street dealer. ​The portfolio was diverse, with a sizable concentration in structured securities and mortgage assets. ​

The legacy analytics system was rigid with no flexibility to vary scenarios or critical investor and regulatory reporting.


5 Vendors → Single Platform

32% Annual Cost Savings

Private Label SecuritiesIncreased Flexibility

Additional Ad-hoc Analytics


”Our existing daily process for calculating, validating, and reporting on key market and credit risk metrics required significant manual work… [Edge] gets us to the answers faster, putting us in a better position to identify exposures and address potential problems.” 

          — Managing Director, Securitized Products 

LET US BUILD YOUR SOLUTION

Models + Data management = End-to-end Managed Process

 

CHALLENGES

Lacked a single-solution

Data integrity issues

Inflexible locally installed risk management system

No direct connectivity to downstream systems


SOLUTIONS

RiskSpan’s Edge Platform delivered a cost-efficient and flexible solution by bundling required data feeds, predictive models for mortgage and structured products, and infrastructure management. ​

The Platform manages and validates the asset manager’s third-party and portfolio data and produces scenario analytics in a secure hosted environment. 


 

EDGE WE PROVIDED

End-to-end data and risk management platform

  • Scalable, cloud native technology
  • Increased flexibility to run analytics at loan level; additional interactive / ad-hoc analytics
  • Reliable accurate data with frequent updates

Cost and operational efficiencies gained

  • Streamlined workflows | Automated processes
  • 32% annual cost savings
  • 46% fewer resources needed for maintenance

EDGE: The Fed’s MBS, Distribution and Prepayments

Since the Great Financial Crisis of 2008, the Federal Reserve Bank of New York has been the largest and most influential participant in the mortgage-backed securities market. In the past 14 years, the Fed’s holdings of conventional and GNMA pools has grown from zero to $2.7 trillion, representing roughly a third of the outstanding market. With inflation spiking, the Fed has announced an end to MBS purchases and will shift into balance-sheet-reduction mode. In this short post, we review the Fed’s holdings, their distribution across coupon and vintage, and their potential paydowns as rates rise.

The New York Fed publishes its pool holdings here. The pools are updated weekly and have been loaded into RiskSpan’s Edge Platform. The chart below summarizes the Fed’s 30yr Fannie/Freddie holdings by vintage and net coupon.

LEARN MORE ABOUT A DEMO OR TRIAL

We further categorize the Fed’s holdings by vintage and borrower note rate (gross WAC) at the loan level. Using loan-level data (rather than weighted-average statistics published on Fed-held Supers or their constituent pools [1]) provides a more accurate view of the Fed’s distribution of note rates and hence prepayment exposure.

Not surprisingly, the recent and largest quantitative easing has left the Fed holding MBS with gross WACs below the current mortgage rate. Roughly 85% of the mortgages held by the Fed are out-of-the-money, and the remaining in-the-money mortgages are several years seasoned. These older pools are beginning to exhibit burnout, with the sizable refinancing wave over the last two years having limited these moderately seasoned loans mainly to borrowers who are less reactive to savings from refinancing.

With most of the Fed’s portfolio at below-market rates and the remaining MBS moderately burned out, market participants expect the Fed’s MBS runoff to continue to slow. At current rates, we estimate that Fed paydowns will continue to decline and stabilize around $25B per month in the second quarter, just shy of 1% of its current MBS holdings.

With these low levels of paydowns, we anticipate the Fed will need to sell MBS if they want to make any sizable reduction in their balance sheet. Whether the Fed feels compelled to do this, or in what manner sales will occur, is an unsettled question. But paydowns alone will not significantly reduce the Fed’s holdings of MBS over the near term.


[1] FNMA publishes loan-level data for pools securitized in 2013 onward. For Fed holdings that were securitized before 2013, we used FNMA pool data.  


EDGE: Measuring the Potential for Another Cash-out Refi Wave

With significant home price gains over the last two years, U.S. homeowners are sitting on vast, mostly untapped wealth. Nationally, home prices are up an aggregate of 28% over the last two years, with some regions performing even better. But unlike other periods of strong home price gains, cash-out refinancings lagged overall refinancings during the pandemic rate-rally. In this short article, we look at cash-out refinancings over time, and their potential impact on prepayments, especially on discount cohorts.

A historical perspective

In the early 2000s, mortgage rates fell nearly 200bp, triggering a massive refinancing wave as well as a rally in home prices that lasted well into 2005.

During this early millennium rally, the market saw significant cash-out refi activity with homeowners borrowing at then-historically low rates to free up cash. The market even saw refinancing activity in mortgages with note rates below the prevailing market rate. In 2002, CPRs on some discount cohorts hit the low to middle teens, which many participants attributed to cash-out refinancing. Resetting a mortgage 50 basis points higher can nevertheless often lead to overall lower debt servicing when borrowers use cash-out refis to consolidate auto loans, credit cards and other higher-rate unsecured borrowings.[1] In the early 2000s, this cash-out refinancing activity led to overall faster speeds and a higher S-curve for out-of-the-money cohorts. How does 2002-03 cash-out refi activity compare to today? In the early 2000s, issuance of cash-out mortgages, as a percentage of the total market, varied between 1% and 2.5% of the outstanding mortgage universe each month.

LEARN MORE ABOUT RISKSPAN's EDGE PLATFORM

Since the onset of the pandemic, that figure has not experienced the same kind of spike, hovering around just 0.9%.[2]

In 2002-03, most of these cash-out borrowers refinanced into lower rates, but a sufficient number took out mortgages at same or higher rates to drive prepayments on discount MBS into the low teens CPR (see black s-curve below). By comparison, out-of-the money speeds today (the blue s-curve) are approximately 4 CPR slower.

The nearly 30% rally in home prices during the pandemic has further strengthened a solid housing market. Today’s borrowers have substantial equity in their homes, leaving many homeowners with untapped borrowing power, shown in the market-implied LTVs below. From an origination standpoint, mortgage lenders have sufficient capacity to support any uptick in cash-out refinancing as rate-term refinancing volumes decline.

Any growth in cash-out refi issuance is likely to come on loans with note rates close to the prevailing mortgage rate. If a homeowner needs to generate cash for a large purchase, it can make economic sense to refinance an existing loan into a new loan with rates as much as 25bp or 50bp higher, rather than incur even higher (and shorter-term) interest rates on credit cards or personal loans. Therefore, any uptick in cash-out refinancing will likely have a larger effect on prepayment speeds for MBS that are either at-the-money or slightly out-of-the-money. This uptick may mitigate some of the extension risk in near-discount mortgages, especially in non-spec cohorts where refinancing frictions are lower. While the past two years have seen substantial changes, positive and negative, in overall refinancings, cash-out refis have largely not followed suit. But a significant home price rally, coupled with strong economic activity and excess originator capacity, could change that trend in the upcoming year.



Improving the Precision of MSR Pricing Using Cloud-Native Loan-Level Analytics (Part I)

Traditional MSR valuation approaches based on rep lines and loan characteristics important primarily to prepayment models fail to adequately account for the significant impact of credit performance on servicing cash flows – even on Agency loans. Incorporating both credit and prepayment modeling into an MSR valuation regime requires a loan-by-loan approach—rep lines are simply insufficient to capture the necessary level of granularity.

Performing such an analysis while evaluating an MSR portfolio containing hundreds of thousands of loans for potential purchase has historically been viewed as impractical. But thanks to today’s cloud-native technology, loan-level MSR portfolio pricing is not just practical but cost-effective.

Introduction

Mortgage Servicing Rights (MSRs) entitle the asset owner to receive a monthly fee in return for providing billing, collection, collateral management and recovery services with respect to a pool of mortgages on behalf of the beneficial owner(s) of those mortgages. This servicing fee consists primarily of two components based on the current balance of each loan:  a base servicing fee (commonly 25bps of the loan balance) and an excess servicing fee.  The latter is simply the difference between each loan rate and the sum of the pass-through rate of interest and the base servicing.

The value of a portfolio of MSRs is determined by modeling the projected net cash flows to the owner and discounting them to the present using one of two methodologies:

  1. Static or Single-Path Pricing: A single series of net servicing cash flows are generated using current interest and mortgage rates which are discounted to a present value using a discount rate reflecting current market conditions.
  2. Stochastic or Option-Adjusted Spread (OAS) Pricing: Recognizing that interest rates will vary over time, a statistical simulation of interest rates is used to generate many time series (typically 250 to 1,000) of net servicing cash flows.  Each time series of cash flows is discounted at a specified spread over a simulated base curve (generally the LIBOR or Treasury curve) and the resulting present value is averaged across all of the paths.

While these two pricing methodologies have different characteristics and are based on very different conceptual frameworks, they both strongly depend on the analyst’s ability to generate reliable forecasts of net servicing cashflows.  As the focus of this white paper is to discuss the key factors that determine the net cashflows, we are indifferent here as to the ultimate methodology used to convert those cashflows into a present value and for simplicity will look to project a single path of net cash flows.  RiskSpan’s Edge platform supports both static and OAS pricing and RiskSpan’s clients use each and sometimes both to value their mortgage instruments.

Modeling Mortgage Cash Flows

Residential mortgages are complex financial instruments. While they are, at their heart, a fixed income instrument with a face amount and a fixed or a floating rate of interest, the ability of borrowers to voluntarily prepay at any time adds significant complexity.  This prepayment option can be triggered by an economic incentive to refinance into a lower interest rate, by a decision to sell the underlying property or by a change in life circumstances leading the borrower to pay off the mortgage but retain the property.

The borrower also has a non-performance option. Though not usually exercised voluntarily, forbearance options made available to borrowers in response to Covid permitted widespread voluntary exercise of this option without meaningful negative consequences to borrowers. This non-performance option ranges from something as simple as a single late payment up to cessation of payments entirely and forfeiture of the underlying property. Forbearance (a payment deferral on a mortgage loan permitted by the servicer or by regulation, such as the COVID-19 CARES Act) became a major factor in understanding the behavior of mortgage cash flows in 2020.

Should a loan default, ultimate recovery depends on a variety of factors, including the loan-to-value ratio, external credit support such as primary mortgage insurance as well as costs and servicer advances paid from liquidation proceeds.

Both the prepayment and credit performance of mortgage loans are estimated with the use of statistical models which draw their structure and parameters from an extremely large dataset of historical performance.  As these are estimated with reference to backward-looking experience, analysts often adjust the models to reflect their experience adjusted for future expectations.

Investors in GSE-guaranteed mortgage pass-through certificates are exposed to voluntary and, to a far less extent, involuntary (default) prepayments of the underlying mortgages.  If the certificates were purchased at a premium and prepayments exceed expectations, the investor’s yield will be reduced.  Conversely, if the certificates were purchased at a discount and prepayments accelerated, the investor’s yield will increase.  Guaranteed pass-through certificate investors are not exposed to the credit performance of the underlying loans except to the extent that delinquencies may suppress voluntary prepayments. Involuntary prepayments and early buyouts of delinquent loans from MBS pools are analogous to prepayments from a cash flow perspective when it comes to guaranteed Agency securities.

Investors in non-Agency securities and whole loans are exposed to the same prepayment risk as guaranteed pass-through investors are, but they are also exposed to the credit performance of each loan. And MSR investors are exposed to credit risk irrespective of whether the loans they service are guaranteed.

Here is why.

The mortgage servicing fee can be simplistically represented by an interest-only (IO) strip carved off of the interest payments on a mortgage. Net MSR cash flows are obtained by subtracting a fixed servicing cost. Securitized IOs are exposed to the same factors as pass-through certificates, but their sensitivity to those factors is magnitudes greater because a prepayment constitutes the termination of all further cash flows – no principal is received.  Consequently, returns on IO strips are very volatile and sensitive to interest rates via the borrower’s prepayment incentive.

While subtracting fixed costs from the servicing fee is still a common method of generating net MSR cash flows, it is a very imprecise methodology, subject to significant error. The largest component of this error arises from the fact that servicing cost is highly sensitive to the credit state of a mortgage loan. Is the loan current, requiring no intervention on the part of the servicer to obtain payment, or is the loan delinquent, triggering additional, and potentially costly, servicer processes that attempt to restore the loan to current? Is it seriously delinquent, requiring a still higher level of intervention, or in default, necessitating a foreclosure and liquidation effort?

According to the Mortgage Bankers Association, the cost of servicing a non-performing loan ranged from eight to twenty times the cost of servicing a performing loan during the ten-year period from 2009 to 1H2019 (Source: Servicing Operations Study and Forum; PGR 1H2019). Using 2014 as both the mid-point of this ratio and of the time period under consideration, the direct cost of servicing a performing loan was $156, compared to $2,000 for a non-performing loan. Averaged across both performing and non-performing loans, direct servicing costs were $171 per loan, with an additional cost of $31 per loan arising from unreimbursed expenditures related to foreclosure, REO and other costs, plus an estimated $58 per loan of corporate administration expense, totaling $261 per loan.

The average loan balance of FHLMC and FNMA loans in 2014 was approximately $176,000, translating to an annual base servicing fee of $440.

The margins illustrated by these figures demonstrate the extreme sensitivity of net servicing cash flows to the credit performance of the MSR portfolio. After prepayments, credit performance is the most important factor determining the economic return from investing in MSRs.  A 1% increase in non-performing loans from the 10yr average of 3.8% results in a $20 per loan net cash flow decline across the entire portfolio.  Consequently, for servicers who purchase MSR portfolios, careful integration of credit forecasting models into the MSR valuation process, particularly for portfolio acquisitions, is critical.

RiskSpan’s MSR engine integrates both prepayment and credit models, permitting the precise estimation of net cash flows to MSR owners. The primary process affecting the cash inflow to the servicer is prepayment; when a loan prepays, the servicing fee is terminated. The cash outflow side of the equation depends on a number of factors:

  1. First and foremost, direct servicing cost is extremely sensitive to loan performance. The direct cost of servicing rises rapidly as delinquency status becomes increasingly severe. Direct servicing cost of a 30-day delinquent loan varies by servicer but can be as high as 350% of a performing loan. These costs rise to 600% of a performing loan’s cost at 60 days delinquent.
  2. Increasing delinquency causes other costs to escalate, including the cost of principal and interest as well as tax and escrow advances, non-reimbursable collateral protection, foreclosure and liquidation expenses. Float decreases, reducing interest earnings on cash balances.

    Source: Average servicing cost by delinquency state as supplied by several leading servicers of Agency and non-Agency mortgages.


RiskSpan’s MSR platform incorporates the full range of input parameters necessary to fully characterize the positive and negative cash flows arising from servicing. Positive cash flows include the servicing and other fees collected directly from borrowers as well as various types of ancillary and float income. Major contributors to negative cash flows include direct labor costs associated with performing servicing activities as well as unreimbursed foreclosure and liquidation costs, compensating interest and costs associated with financing principal, interest and escrow advances on delinquent loans.

The net cash flows determined at the loan level are aggregated across the entire MSR portfolio and the client’s preferred pricing methodology is applied to calculate a portfolio value.



Aggregation of MSR Portfolio Cash Flows – Loan-by-Loan vs “Rep Lines”

Historically, servicer net cash flows were determined using a simple methodology in which the base servicing fee was reduced by the servicing cost, and forecast prepayments were projected using a prepayment model. The impact of credit performance on net cash flows was explicitly considered by only a minority of practitioners.

Because servicing portfolios can contain hundreds of thousands or millions of loans, the computational challenge of generating net servicing cash flows was quite high. As the industry moved increasingly towards using OAS pricing and risk methodologies to evaluate MSRs, this challenge was multiplied by 250 to 1,000, depending on the number of paths used in the stochastic simulation.

In order to make the computational challenge more tractable, loans in large portfolios have historically been allocated to buckets according to the values of the characteristics of each loan that most explained its performance. In a framework that considered prepayment risk to be the major factor affecting MSR value, the superset of characteristics that mattered were those that were inputs to the prepayment model. This superset was then winnowed down to a handful of characteristics that were considered most explanatory. Each bucket would be converted to a “rep line” that represented the average of the values for each loan that were input into the prepayment models.



Medium-sized servicers historically might have created 500 to 1,500 rep lines to represent their portfolio. Large servicers today may use tens of thousands. 

The core premise supporting the distillation of a large servicing portfolio into a manageable number of rep lines is that each bucket represents a homogenous group of loans that will perform similarly, so that the aggregated net cash flows derived from the rep lines will approximate the performance of the sum of all the individual loans to a desired degree of precision.

The degree of precision obtained from using rep lines was acceptable for valuing going-concern portfolios, particularly if variations in the credit of individual loans and the impact of credit on net cash flows were not explicitly considered.  Over time, movement in MSR portfolio values would be driven mostly by prepayments, which themselves were driven by interest rate volatility. If the modeled value diverged sufficiently from “fair value” or a mark provided by an external provider, a valuation adjustment might be made and reported, but this was almost always a result of actual prepayments deviating from forecast.

Once an analyst looks to incorporate credit performance into MSR valuation, the number of meaningful explanatory loan characteristics grows sharply.  Not only must one consider all the variables that are used to project a mortgage’s cash flows according to its terms (including prepayments), but it also becomes necessary to incorporate all the factors that help one project exercise of the “default option.” Suddenly, the number of loans that could be bucketed together and be considered homogenous with respect to prepayment and credit performance would drop sharply; the number of required buckets would increase dramatically –to the point where the number of rep lines begins to rival the number of loans. The sheer computational power needed for such complex processing has only recently become available to most practitioners and requires a scalable, cloud-native solution to be cost effective.

Two significant developments have forced mortgage servicers to more precisely project net mortgage cash flows:

  1. As the accumulation of MSRs by large market participants through outright purchase, rather than through loan origination, has been growing dramatically, imprecision in valuation became less tolerable as it could result in the servicer bidding too low or too high for a servicing package.
  2. FASB Accounting Standard 2016-13 obligated entities holding “financial assets and net investment in leases that are not accounted for at fair value through net income” to estimate “incurred losses,” or estimated futures losses over the life of the asset. While the Standard does not necessarily apply to MSRs because most MSR investors account for the asset at fair value and flow fair value mark-to-market through income, it did lead to a statement from the major regulators:

“If a financial asset does not share risk characteristics with other financial assets, the new accounting standard requires expected credit losses to be measured on an individual asset basis.” 

(Source: Board of Governors of the Federal Reserve System, Federal Deposit Insurance Corporation, National Credit Union Administration, and Office of the Comptroller of the Currency. “Joint Statement on the New Accounting Standard on Financial Instruments – Credit Losses.” June 17, 2016.).

The result of these developments is that a number of large servicers are revisiting their bucketing methodologies and considering using loan-level analyses to better incorporate the impact of credit on MSR value, particularly when purchasing new packages of MSRs. By enabling MSR investors to re-combine and re-aggregate cash flow results on the fly, loan-level projections open the door to a host of additional, scenario-based analytics. RiskSpan’s cloud-native Edge Platform is uniquely positioned to support these emerging methodologies because it was envisioned and built from the ground up as a loan-level analytical engine. The flexibility afforded by its parallel computing framework allows for complex net-cash-flow calculations on hundreds of thousands of individual mortgage loans simultaneously. The speed and scalability this affords makes the Edge Platform ideally suited for pricing even the largest portfolios of MSR assets and making timely trading decisions with confidence.


In Part II of this series, we will delve into property-level risk characteristics—factors that are not easily rolled up into portfolio rep lines and must be evaluated at the loan level—impact credit risk and servicing cash flows. We will also quantify the impact of a loan-level analysis incorporating these factors on an MSR valuation.

Contact us to learn more.


Get Started
Get A Demo