Linkedin    Twitter   Facebook

Get Started
Log In

Linkedin 

Articles Tagged with: Featured Home

Agency Social Indices & Prepay Speeds

Do borrowers in “socially rich” pools respond to refinance incentives differently than other borrowers? 

The decision by Fannie and Freddie to release social index disclosure data in November 2022 makes it possible for investors to direct their capital in support of first-time homebuyers, historically underserved borrowers, and people who purchase homes in traditionally underserved areas. Because socially conscious investors likely also have interest in understanding how these social pools are likely to perform, we were curious to examine and learn whether mortgage pools with higher social ratings behaved differently than pools with lower social ratings (and if a difference existed, how significant it was). To the extent that pools rich in social factors perform better (i.e., prepay more slowly) than pools generally, we expect investors to put an even higher premium on them. This in turn should result in lower rates for the borrowers whose loans contribute to pools with higher social scores. 

The data is new and we are still learning things, but we are beginning to discern some differences in prepay speeds.

Definitions 

First, a quick refresher on Fannie’s and Freddie’s social index terminology: 

  • Social Criteria Share (SCS): The percentage of loans in a given pool that meet at least one of the “social” criteria. The criteria are low-income, minority, and first-time homebuyers; homes in low-income areas, minority tracts, high-needs rural areas; homes in designated disaster areas and manufactured housing. As of December 2022, 42.12 percent of loans in the average pool satisfy at least one of these criteria. 
  • Social Density Score (SDS): A measure of how many criteria the average loan in a given pool satisfies. For simplicity, the index consolidates the criteria into three categories – those pertaining to income, those pertaining to the borrower, and those pertaining to the property. A pool’s SDS can be zero, 1, 2, or 3 depending on the number of categories within which the loan satisfies at least one criterion. The average SDS as of December 2022 is 0.62 (out of 3). 

Do social index scores impact prepay speeds? 

While it remains too early to answer this question with a great deal of certainty, historical performance data appears to show that pools with below-average social index scores prepay faster than more “social” bonds. 

We first looked at a high-level, simplistic relationship between prepayments and Social Density Score. In Figure 1, below, pools with below-average Social Density Scores (blue line) prepay faster than both pools with above-average SDS (black line) and pools with the very highest SDS (green line) when they are incentivized by interest rates to do so. (Note that very little difference exists among the curves when borrowers are out of the money to refi.)  


Fig. 1: Speeds by Prepay Incentive and Social Density Score 

See how easy RiskSpan’s Edge Platform makes it for you to do these analyses yourself.

Request a Trial

We note a similar trend when it comes to Social Criteria Share (see Fig. 2, below).  


Fig. 2: Speeds by Prepay Incentive and Social Criteria Share 

Social Pool Performance Relative to Spec Pools 

Investors pay up for mortgage pools with specified characteristics. We thought it worthwhile to compare how certain types of spec pools perform relative to socially rich pools with no other specified characteristics. 

Figure 3, below, compares the performance of non-spec pools with above-average Social Criteria Share (orange line) vs. spec pools for low-FICO (blue line), high-LTV (black line) and max $250k (green line) loans. 

Note that, notwithstanding a lack of any other specific characteristics that investors pay up for, the high-SCS pools exhibit a somewhat better convexity profile than the max-700 FICO and min-95 LTV pools and slightly worse convexity (in most refi incentive buckets) than max-250k pools. 


Fig. 3: Speeds by Prepay Incentive and Social Criteria Share: Socially Rich (Non-Spec) Pools vs. Selected Spec Pools

We observe a similar effect when we compare non-spec pools with an above-average Social Density Score to the same spec pools (Fig. 4, below).   


Fig. 4: Speeds by Prepay Incentive and Social Density Score: Socially Rich (Non-Spec) Pools vs. Selected Spec Pools 

See how social index scores affect speeds relative to other spec pools.

Contact us

Edge Platform Adds Fannie and Freddie Social Index Data

ARLINGTON, Va., January 18, 2023 — RiskSpan, a leading technology company and the most comprehensive source for data management and analytics for residential mortgage and structured products, has announced the incorporation of Fannie Mae’s and Freddie Mac’s Single-Family Social Index data into its award-winning Edge Platform.

Fannie and Freddie rolled out their social index disclosures in November 2022. Consisting of two measures, the Social Criteria Score and the Social Density Score, the social index discloses the share of loans in a given pool that are made to low-income, minority, and first-time homebuyers, as well as mortgages on homes in low-income areas, minority tracts, high-needs rural areas, and designated disaster areas. Manufactured housing loans also contribute to the score.

Rather than classifying each individual bond as “social” or “not social,” the new Agency data available on the Edge Platform assigns every pool two fully transparent scores – one indicating the percentage of loans in a pool that satisfy any of the defined social criteria, the other reflecting how many criteria a pool’s average loan satisfies.

Taken together, these enable Agency traders and investors to view and understand each pool along a full continuum of the social index, as opposed to simply assigning a binary social designation. Because borrowers behave differently at various places along this continuum, traders and investors fine-tune their analytics in ways never before possible to isolate pools with potentially slower prepayment speeds in a way that transcends what has traditionally been available using so-called “spec. pool” stories alone.

Comprehensive details of this and other new capabilities are available by requesting a no-obligation live demo at riskspan.com.

This new functionality is the latest in a series of enhancements that further the Edge Platform’s objective of providing frictionless insight to Agency MBS traders and investors, knocking down barriers to efficient, clear and data-driven valuation and risk assessment.

### 

About RiskSpan, Inc. 

RiskSpan offers cloud-native SaaS analytics for on-demand market risk, credit risk, pricing and trading. With our data science experts and technologists, we are the leader in data as a service and end-to-end solutions for loan-level data management and analytics.

Our mission is to be the most trusted and comprehensive source of data and analytics for loans and structured finance investments.

Rethink loan and structured finance data. Rethink your analytics. Learn more at www.riskspan.com.

Get a Demo

About RiskSpan, Inc. 

RiskSpan offers cloud-native SaaS analytics for on-demand market risk, credit risk, pricing and trading. With our data science experts and technologists, we are the leader in data as a service and end-to-end solutions for loan-level data management and analytics. 

Our mission is to be the most trusted and comprehensive source of data and analytics for loans and structured finance investments. 

Rethink loan and structured finance data. Rethink your analytics. Learn more at www.riskspan.com. 

Media contact: Timothy Willis 


Temporary Buydowns are Back. What Does This Mean for Speeds?

Mortgage buydowns are having a deja-vu moment. Some folks may recall mortgages with teaser rates in the pre-crisis period. Temporary buydowns are similar in concept. Recent declines notwithstanding, mortgage rates are still higher than they have been in years. Housing remains pricey. Would-be home buyers are looking for any help they can get. While on the other hand, with an almost non-existent refi market, mortgage originators are trying to find innovative ways to keep the production machine going. Conditions are ripe for lender and/or builder concessions that will help close the deal.

Enter the humble “temporary” mortgage interest rate buydown. A HousingWire article last month addressed the growing trend. It’s hard to turn on the TV without being bombarded with ads for Rocket Mortgage’s “Inflation Buster” program. Rocket Mortgage doesn’t use the term temporary buydown in its TV spots, but that is what it is.

Buydowns, in general, refer to when a borrower pays “points” upfront to reduce the mortgage rate to a level where they can afford the monthly payment. The mortgage rate has been “bought down” from its original rate for the entire life of the mortgage by paying a lumpsum upfront. Temporary Buydowns, on the other hand, come in various shapes and sizes, but the most common ones are a “2 – 1” (a 2-percent interest rate reduction in the first year and a 1-percent reduction in year two) and a “1 – 0” (a 1-percent interest rate reduction in the first year only). In these situations, the seller, or the builder, or the lender or a combination thereof put-up money to cover the difference in interest rate payments between the original mortgage rate and the reduced mortgage rate. In the 2-1 example above, the mortgage rate is reduced by 2% for the first year and then steps up by 1% in the second year and then steps up by another 1% in the 3rd year to reach the actual mortgage rate at origination. So, the interest portion of the monthly mortgage payments are “subsidized” for the first two years and then revert to the full monthly payment. Given the inflated rental market, these programs can make purchasing more advantageous than renting (for home seekers trying to decide between the two options). They can also make purchasing a home more affordable (temporarily, at least) for would-be buyers who can’t afford the monthly payment at the prevailing mortgage rate. It essentially buys them time to refinance into a lower rate should interest rates fall over the subsidized time frame or they may be expecting increased income (raises, business revenue) in the future which will allow them to afford the unsubsidized monthly payment.

Temporary buydowns present an interesting situation for prepayment and default modelers. Most borrowers with good credit behave similarly to refinance incentives, barring loan size and refi cost issues. While permanent buydowns tend to exhibit slower speeds when they come in the money by a small amount since the borrower needs to make a cost/benefit decision about recouping the upfront money they put down and the refi costs associated with the new loan. Their breakeven point is going to be lower by 25bps or 50bps from their existing mortgage rate. So, their response to mortgage rates dropping will be slower than borrowers with similar mortgage rates who didn’t pay points upfront. Borrowers with temporary buydowns will be very sensitive to any mortgage rate drops and will refinance at the first opportunity to lock in a lower rate before the “subsidy” expires. Hence, such mortgages are expected to prepay at higher speeds then other counterparts with similar rates. In essence, they behave like ARMs when they approach their reset dates.

When rates stay static or increase, temporary buydowns will behave like their counterparts except when they get close to the reset dates and will see faster speeds. Two factors would contribute to this phenomenon. The most obvious reason is that temporary buydown borrowers will want to refinance into the lowest rate available at the time of reset (perhaps an ARM).  The other possibility is that some of these borrowers may not be able refi because of DTI issues and may default. Such borrowers may also be deemed “weaker credits” because of the subsidy that they received. This increase in defaults would elevate their speeds (increased CBRs) relative to their counterparts.

So, for the reasons mentioned above, temporary buydown mortgages are expected to be the faster one among the same mortgage rate group. In the table below we separate borrowers with the same mortgage rate into 3 groups: 1) those that got a normal mortgage at the prevailing rate and paid no points, 2) those that paid points upfront to get a permanent lower rate and 3) those who got temporary lower rates subsidized by the seller/builder/lender. Obviously, the buydowns occurred in higher rate environments but we are considering 3 borrower groups with the same mortgage rate regardless of how they got that rate. We are assuming that all 3 groups of borrowers currently have a 6% mortgage. We present the expected prepay behavior of all 3 groups in different mortgage rate environments:

*Turnover++ means faster due to defaults or at reset
 Rate Rate Shift 6% (no pts)

Buydown to 6%(borrower-paid)

Buydown to 6% (lender-paid)  
7.00% +100 Turnover Turnover Turnover++*  
6.00% Flat Turnover Turnover Faster (at reset)  
5.75% -25 Refi Turnover Refi  
5.00% -100 Refi (Faster) Refi (Fast) Refi (Fastest)  

Overall, temporary buydowns are likely to exhibit the most rate sensitivity. As their mortgage rates reset higher, they will behave like ARMs and refi into any other lower rate option (5/1 ARM) or possibly default. In the money, they will be the quickest to refi.

Contact Us

HECM Loan Data, Smart Assumptions, and Cross-Sector Trade Impact Headline New Edge Platform Functionality

ARLINGTON, Va., December 8, 2022RiskSpan, a leading technology company and the most comprehensive source for data management and analytics for residential mortgage and structured products, has announced a flurry of new functionality on its award-winning Edge Platform.

GNMA HECM Datasets and Involuntary Prepayment Breakdown: The GNMA HECM dataset is now available to subscribers in Edge’s Historical Performance module, allowing market participants to find performance differentials within FHA reverse mortgage data. As with conventional datasets available on Edge, users slice and dice by any loan attribute to create S-curves, aging curves, time series and other decision-useful analytics.

Edge users also can now parse GNMA buyout metrics by reason, based on whether individual loans were in delinquency, loss mitigation, or foreclosure when they were removed from the security.

Smart Assumptions: Rather than relying on static assumptions to back-fill missing credit scores, DTIs, LTVs and other data on loan acquisition tapes, the Edge Platform has begun employing a smart, dynamic approach to creating more educated estimates of missing assumptions based on other loan characteristics. Users have the option of accepting these assumptions or substituting their own.

Cross-Sector Trade Impact: As a provider of loan and securities analytics, RiskSpan is making it easier to forecast the combined performance of loan and securities portfolios together in a single view. This allows traders and analysts tools to evaluate the risk and return impact of not only different loan selections or bond selections but also cross-sector reallocation.

These new enhancements all further the Edge Platform’s purpose of providing frictionless insight, knocking down barriers to efficient, clear and data-driven valuation and risk assessment.

Comprehensive details of this and other new capabilities are available by requesting a no-obligation live demo at riskspan.com.

This new functionality is the latest in a series of enhancements that is making the Edge Platform increasingly indispensable for Agency MBS traders and investors.

Get a Demo

About RiskSpan, Inc. 

RiskSpan offers cloud-native SaaS analytics for on-demand market risk, credit risk, pricing and trading. With our data science experts and technologists, we are the leader in data as a service and end-to-end solutions for loan-level data management and analytics. 

Our mission is to be the most trusted and comprehensive source of data and analytics for loans and structured finance investments. 

Rethink loan and structured finance data. Rethink your analytics. Learn more at www.riskspan.com. 

Media contact: Timothy Willis 


RiskSpan Unveils New “Reverse ETL” Mortgage Data Mapping and Extract Functionality

ARLINGTON, Va., October 19, 2022 – Subscribers to RiskSpan’s Mortgage Data Management product can now not only leverage machine learning to streamline the intake of loan data from any format, but also define any target format for data extraction and sharing.

A recent enhancement to RiskSpan’s award-winning Edge Platform enables users to take in unformatted datasets from mortgage servicers, sellers and other counterparties and convert them into their preferred data format on the fly for sharing with accounting, client, and other downstream systems.

Analysts, traders, and portfolio managers have long used Edge to take in and store datasets, enabling them to analyze historical performance of custom cohorts using limitless combinations of mortgage loan characteristics and run predictive analytics on segments defined on the fly. With Edge’s novel “Reverse ETL” data extract functionality, these Platform users can now also easily and fully design an export format for exporting their data, creating the functional equivalent of a full integration node for sharing data with literally any system on or off the Edge Platform.   

Market participants tout the revolutionary technology as the end of having to share cumbersome and unformatted CSV files with counterparties. Now, the same smart mapping technology that for years has facilitated the ingestion of mortgage data onto the Edge Platform makes extracting and sharing mortgage data with downstream users just as easy.   

Comprehensive details of this and other new capabilities using RiskSpan’s Edge Platform are available by requesting a no-obligation live demo at riskspan.com.

SCHEDULE A FREE DEMO

This new functionality is the latest in a series of enhancements that is making the Edge Platform’s Data as a Service increasingly indispensable for mortgage loan and MSR traders and investors.

### 

About RiskSpan, Inc. 

RiskSpan is a leading technology company and the most comprehensive source for data management and analytics for residential mortgage and structured products. The company offers cloud-native SaaS analytics for on-demand market risk, credit risk, pricing and trading. With our data science experts and technologists, we are the leader in data as a service and end-to-end solutions for loan-level data management and analytics.

Our mission is to be the most trusted and comprehensive source of data and analytics for loans and structured finance investments.

Rethink loan and structured finance data. Rethink your analytics. Learn more at www.riskspan.com.

Media contact: Timothy Willis

CONTACT US


Bumpy Road Ahead for GNMA MBS?

In a recent webinar, RiskSpan’s Fowad Sheikh engaged in a robust discussion with two of his fellow industry experts, Mahesh Swaminathan of Hilltop Securities and Mike Ortiz of DoubleLine Group, to address the likely road ahead for Ginnie Mae securities performance.


The panel sought to address the following questions:

  • How will the forthcoming, more stringent originator/servicer financial eligibility requirements affect origination volumes, buyouts, and performance?
  • Who will fill the vacuum left by Wells Fargo’s exiting the market?
  • What role will falling prices play in delinquency and buyout rates?
  • What will be the impact of potential Fed MBS sales.

This post summarizes some the group’s key conclusions. A recording of the webinar in its entirety is available here.

GET STARTED

Wells Fargo’s Departure

To understand the the likely impact of Wells Fargo’s exit, it is first instructive to understand the declining market share of banks overall in the Ginnie Mae universe. As the following chart illustrates, banks as a whole account for just 11 percent of Ginnie Mae originations, down from 39 percent as recently as 2015.

Drilling down further, the chart below plots Wells Fargo’s Ginnie Mae share (the green line) relative to the rest of the market. As the chart shows, Wells Fargo accounts for just 3 percent of Ginnie Mae originations today, compared to 15 percent in 2015. This trend of Wells Fargo’s declining market share extends all the way back to 2010, when it accounted for some 30 percent of Ginnie originations.

As the second chart below indicates, Wells Fargo’s market share, even among banks has also been on a steady decline.

GeT A Free Trial or Demo

Three percent of the overall market is meaningful but not likely to be a game changer either in terms of origination trends or impact on spreads. Wells Fargo, however, continues to have an outsize influence in the spec pool market. The panel hypothesized that Wells’s departure from this market could open the door to other entities claiming that market share. This could potentially affect prepayment speeds – especially if Wells is replaced by non-bank servicers, which the panel felt was likely given the current non-bank dominance of the top 20 (see below) – since Wells prepays have traditionally been slightly better than the broader market.

The panel raised the question of whether the continuing bank retreat from Ginnie Mae originations would adversely affect loan quality. As basis for this concern, they cited the generally lower FICO scores and higher LTVs that characterize non-bank-originated Ginnie Mae mortgages (see below). 

These data notwithstanding, the panel asserted that any changes to credit quality would be restricted to the margins. Non-bank servicers originate a higher percentage of lower-credit-quality loans (relative to banks) not because non-banks are actively seeking those borrowers out and eschewing higher-credit-quality borrowers. Rather, banks tend to restrict themselves to borrowers with higher credit profiles. Non-banks will be more than happy to lend to these borrowers as banks continue to exit the market.

Effect of New Eligibility Requirements

The new capital requirements, which take effect a year from now, are likely to be less punitive than they appear at first glance. With the exception of certain monoline entities – say, those with almost all of their assets concentrated in MSRs – the overwhelming majority of Ginnie Mae issuers (banks and non-banks alike) are going to be able meet them with little if any difficulty.

Ginnie Mae has stated that, even if the new requirements went into effect tomorrow, 95 percent of its non-bank issuers would qualify. Consequently, the one-year compliance period should open the door for a fairly smooth transition.

To the extent Ginnie Mae issuers are unable to meet the requirements, a consolidation of non-bank entities is likely in the offing. Given that these institutions will likely be significant MSR investors, the potential increase in MSR sales could impact MSR multiples and potentially disrupt the MSR market, at least marginally.

Potential Impacts of Negative HPA

Ginnie Mae borrowers tend to be more highly leveraged than conventional borrowers. FHA borrowers can start with LTVs as high as 97.5 percent. VA borrowers, once the VA guarantee fee is rolled in, often have LTVs in excess of 100 percent. Similar characteristics apply to USDA loans. Consequently, borrowers who originated in the past two years are more likely to default as they watch their properties go underwater. This is potentially good news for investors in discount coupons (i.e., investors who benefit from faster prepay speeds) because these delinquent loans will be bought out quite early in their expected lives.

More seasoned borrowers, in contrast, have experienced considerable positive HPA in recent years. The coming forecasted decline should not materially impact these borrowers’ performance. Similarly, if HPD in 2023 proves to be mild, then a sharp uptick in delinquencies is unlikely, regardless of loan vintage or LTV. Most homeowners make mortgage payments because they wish to continue living in their house and do not seriously consider strategic defaults. During the financial crisis, most borrowers continued making good on their mortgage obligations even as their LTVs went as high as the 150s.

Further, the HPD we are likely to encounter next year likely will not have the same devastating effect as the HPD wave that accompanied the financial crisis. Loans on the books today are markedly different from loans then. Ginnie Mae loans that went bad during the crisis disproportionately included seller-financed, down-payment-assistance loans and other programs lacking in robust checks and balances. Ginnie Mae has instituted more stringent guidelines in the years since to minimize the impact of bad actors in these sorts of programs.

This all assumes, however, that the job market remains robust. Should the looming recession lead to widespread unemployment, that would have a far more profound impact on delinquencies and buyouts than would HPD.

Fed Sales

The Fed’s holdings (as of 9/21, see chart below) are concentrated around 2 percent and 2.5 percent coupons. This raises the question of what the Fed’s strategy is likely to be for unwinding its Ginnie Mae position.

Word on the street is that Fed sales are highly unlikely to happen in 2022. Any sales in 2023, if they happen at all, are not likely before the second half of the year. The panel opined that the composition of these sales is likely to resemble the composition of the Fed’s existing book – i.e., mostly 2s, 2.5s, and some 3s. They have the capacity to take a more sophisticated approach than a simple pro-rata unwinding. Whether they choose to pursue that is an open question.

The Fed was a largely non-economic buyer of mortgage securities. There is every reason to believe that it will be a non-economic seller, as well, when the time comes. The Fed’s trading desk will likely reach out to the Street, ask for inquiry, and seek to pursue an approach that is least disruptive to the mortgage market.

Conclusion

On closer consideration, many of these macro conditions (Wells’s exit, HPD, enhanced eligibility requirements, and pending Fed sales) that would seem to portend an uncertain and bumpy road for Ginnie Mae investors, may turn out to be more benign than feared.

Conditions remain unsettled, however, and these and other factors certainly bear watching as Ginnie Mae market participants seek to plot a prudent course forward.


Optimizing Analytics Computational Processing 

We met with RiskSpan’s Head of Engineering and Development, Praveen Vairavan, to understand how his team set about optimizing analytics computational processing for a portfolio of 4 million mortgage loans using a cloud-based compute farm.

This interview dives deeper into a case study we discussed in a recent interview with RiskSpan’s co-founder, Suhrud Dagli.

Here is what we learned from Praveen. 


Speak to an Expert

Could you begin by summarizing for us the technical challenge this optimization was seeking to overcome? 

PV: The main challenge related to an investor’s MSR portfolio, specifically the volume of loans we were trying to run. The client has close to 4 million loans spread across nine different servicers. This presented two related but separate sets of challenges. 

The first set of challenges stemmed from needing to consume data from different servicers whose file formats not only differed from one another but also often lacked internal consistency. By that, I mean even the file formats from a single given servicer tended to change from time to time. This required us to continuously update our data mapping and (because the servicer reporting data is not always clean) modify our QC rules to keep up with evolving file formats.  

The second challenge relates to the sheer volume of compute power necessary to run stochastic paths of Monte Carlo rate simulations on 4 million individual loans and then discount the resulting cash flows based on option adjusted yield across multiple scenarios. 

And so you have 4 million loans times multiple paths times one basic cash flow, one basic option-adjusted case, one up case, and one down case, and you can see how quickly the workload adds up. And all this needed to happen on a daily basis. 

To help minimize the computing workload, our client had been running all these daily analytics at a rep-line level—stratifying and condensing everything down to between 70,000 and 75,000 rep lines. This alleviated the computing burden but at the cost of decreased accuracy because they couldn’t look at the loans individually. 

What technology enabled you to optimize the computational process of running 50 paths and 4 scenarios for 4 million individual loans?

PV: With the cloud, you have the advantage of spawning a bunch of servers on the fly (just long enough to run all the necessary analytics) and then shutting it down once the analytics are done. 

This sounds simple enough. But in order to use that level of compute servers, we needed to figure out how to distribute the 4 million loans across all these different servers so they can run in parallel (and then we get the results back so we could aggregate them). We did this using what is known as a MapReduce approach. 

Say we want to run a particular cohort of this dataset with 50,000 loans in it. If we were using a single server, it would run them one after the other – generate all the cash flows for loan 1, then for loan 2, and so on. As you would expect, that is very time-consuming. So, we decided to break down the loans into smaller chunks. We experimented with various chunk sizes. We started with 1,000 – we ran 50 chunks of 1,000 loans each in parallel across the AWS cloud and then aggregated all those results.  

That was an improvement, but the 50 parallel jobs were still taking longer than we wanted. And so, we experimented further before ultimately determining that the “sweet spot” was something closer to 5,000 parallel jobs of 100 loans each. 

Only in the cloud is it practical to run 5,000 servers in parallel. But this of course raises the question: Why not just go all the way and run 50,000 parallel jobs of one loan each? Well, as it happens, running an excessively large number of jobs carries overhead burdens of its own. And we found that the extra time needed to manage that many jobs more than offset the compute time savings. And so, using a fair bit of trial and error, we determined that 100-loan jobs maximized the runtime savings without creating an overly burdensome number of jobs running in parallel.  

Get A Demo

You mentioned the challenge of having to manage a large number of parallel processes. What tools do you employ to work around these and other bottlenecks? 

PV: The most significant bottleneck associated with this process is finding the “sweet spot” number of parallel processes I mentioned above. As I said, we could theoretically break it down into 4 million single-loan processes all running in parallel. But managing this amount of distributed computation, even in the cloud, invariably creates a degree of overhead which ultimately degrades performance. 

And so how do we find that sweet spot – how do we optimize the number of servers on the distributed computation engine? 

As I alluded to earlier, the process involved an element of trial and error. But we also developed some home-grown tools (and leveraged some tools available in AWS) to help us. These tools enable us to visualize computation server performance – how much of a load they can take, how much memory they use, etc. These helped eliminate some of the optimization guesswork.   

Is this optimization primarily hardware based?

PV: AWS provides essentially two “flavors” of machines. One “flavor” enables you to take in a lot of memory. This enables you to keep a whole lot of loans in memory so it will be faster to run. The other flavor of hardware is more processor based (compute intensive). These machines provide a lot of CPU power so that you can run a lot of processes in parallel on a single machine and still get the required performance. 

We have done a lot of R&D on this hardware. We experimented with many different instance types to determine which works best for us and optimizes our output: Lots of memory but smaller CPUs vs. CPU-intensive machines with less (but still a reasonably amount of) memory. 

We ultimately landed on a machine with 96 cores and about 240 GB of memory. This was the balance that enabled us to run portfolios at speeds consistent with our SLAs. For us, this translated to a server farm of 50 machines running 70 processes each, which works out to 3,500 workers helping us to process the entire 4-million-loan portfolio (across 50 Monte Carlo simulation paths and 4 different scenarios) within the established SLA.  

What software-based optimization made this possible? 

PV: Even optimized in the cloud, hardware can get pricey – on the order of $4.50 per hour in this example. And so, we supplemented our hardware optimization with some software-based optimization as well. 

We were able to optimize our software to a point where we could use a machine with just 30 cores (rather than 96) and 64 GB of RAM (rather than 240). Using 80 of these machines running 40 processes each gives us 2,400 workers (rather than 3,500). Software optimization enabled us to run the same number of loans in roughly the same amount of time (slightly faster, actually) but using fewer hardware resources. And our cost to use these machines was just one-third what we were paying for the more resource-intensive hardware. 

All this, and our compute time actually declined by 10 percent.  

The software optimization that made this possible has two parts: 

The first part (as we discussed earlier) is using the MapReduce methodology to break down jobs into optimally sized chunks. 

The second part involved optimizing how we read loan-level information into the analytical engine.  Reading in loan-level data (especially for 4 million loans) is a huge bottleneck. We got around this by implementing a “pre-processing” procedure. For each individual servicer, we created a set of optimized loan files that can be read and rendered “analytics ready” very quickly. This enables the loan-level data to be quickly consumed and immediately used for analytics without having to read all the loan tapes and convert them into a format that analytics engine can understand. Because we have “pre-processed” all this loan information, it is immediately available in a format that the engine can easily digest and run analytics on.  

This software-based optimization is what ultimately enabled us to optimize our hardware usage (and save time and cost in the process).  

Contact us to learn more about how we can help you optimize your mortgage analytics computational processing.


Rethink Analytics Computational Processing – Solving Yesterday’s Problems with Today’s Technology and Access 

We sat down with RiskSpan’s co-founder and chief technology officer, Suhrud Dagli, to learn more about how one mortgage investor successfully overhauled its analytics computational processing. The investor migrated from a daily pricing and risk process that relied on tens of thousands of rep lines to one capable of evaluating each of the portfolio’s more than three-and-a-half million loans individually (and how they actually saved money in the process).  

Here is what we learned. 


Could you start by talking a little about this portfolio — what asset class and what kind of analytics the investor was running? 

SD: Our client was managing a large investment portfolio of mortgage servicing rights (MSR) assets, residential loans and securities.  

The investor runs a battery of sophisticated risk management analytics that rely on stochastic modeling. Option-adjusted spread, duration, convexity, and key rate durations are calculated based on more than 200 interest rate simulations. 

GET A FREE DEMO OR FREE TRIAL

Why was the investor running their analytics computational processing using a rep line approach? 

SD: They used rep lines for one main reason: They needed a way to manage computational loads on the server and improve calculation speeds. Secondarily, organizing the loans in this way simplified their reporting and accounting requirements to a degree (loans financed by the same facility were grouped into the same rep line).  

This approach had some downsides. Pooling loans by finance facility was sometimes causing loans with different balances, LTVs, credit scores, etc., to get grouped into the same rep line. This resulted in prepayment and default assumptions getting applied to every loan in a rep line that differed from the assumptions that likely would have been applied if the loans were being evaluated individually.  

The most obvious solution to this would seem to be one that disassembles the finance facility groups into their individual loans, runs all those analytics at the loan level, and then re-aggregates the results into the original rep lines. Is this sort of analytics computational processing possible without taking all day and blowing up the server? 

SD: That is effectively what we are doing. The process is not a speedy as we’d like it to be (and we are working on that). But we have worked out a solution that does not overly tax computational resources.  

The analytics computational processing we are implementing ignores the rep line concept entirely and just runs the loans. The scalability of our cloud-native infrastructure enables us to take the three-and-a-half million loans and bucket them equally for computation purposes. We run a hundred loans on each processor and get back loan-level cash flows and then generate the output separately, which brings the processing time down considerably. 

SPEAK TO AN EXPERT

So we have a proof of concept that this approach to analytics computational processing works in practice for running pricing and risk on MSR portfolios. Is it applicable to any other asset classes?

SD: The underlying principles that make analytics computational processing possible at the loan level for MSR portfolios apply equally well to whole loan investors and MBS investors. In fact, the investor in this example has a large whole-loan portfolio alongside its MSR portfolio. And it is successfully applying these same tactics on that portfolio.   

An investor in any mortgage asset benefits from the ability to look at and evaluate loan characteristics individually. The results may need to be rolled up and grouped for reporting purposes. But being able to run the cash flows at the loan level ultimately makes the aggregated results vastly more meaningful and reliable. 

A loan-level framework also affords whole-loan and securities investors the ability to be sure they are capturing the most important loan characteristics and are staying on top of how the composition of the portfolio evolves with each day’s payoffs. 

ESG factors are an important consideration for a growing number of investors. Only a loan-level approach makes it possible for these investors to conduct the kind of property- and borrower-level analyses to know whether they are working toward meeting their ESG goals. It also makes it easier to spot areas of geographic concentration risk, which simplifies climate risk management to some degree.  

Say I am a mortgage investor who is interested in moving to loan-level pricing and risk analytics. How do I begin? 

 SD: Three things: 

  1.  It begins with having the data. Most investors have access to loan-level data. But it’s not always clean. This is especially true of origination data. If you’re acquiring a pool – be it a seasoned pool or a pool right after origination – you don’t have the best origination data to drive your model. You also need a data store that can generate loan-loan level output to drive your analytics and models.
  2. The second factor is having models that work at the loan level – models that have been calibrated using loan-level performance and that are capable of generating loan-level output. One of the constraints of several existing modeling frameworks developed by vendors is they were created to run at a rep line level and don’t necessarily work very well for loan-level projections.  
  3. The third thing you need is a compute farm. It is virtually impossible to run loan-level analytics if you’re not on the cloud because you need to distribute the computational load. And your computational distribution requirements will change from portfolio to portfolio based on the type of analytics that you are running, based on the types of scenarios that you are running, and based on the models you are using. 

The cloud is needed not just for CPU power but also for storage. This is because once you go to the loan level, every loan’s data must be made available to every processor that’s performing the calculation. This is where having the kind of shared databases, which are native to a cloud infrastructure, becomes vital. You simply can’t replicate it using a on-premise setup of computers in your office or in your own data center. 

So, 1) get your data squared away, 2) make sure you’re using models that are optimized for loan-level, and 3) max out your analytics computational processing power by migrating to cloud-native infrastructure. Thank you, Suhrud, for taking the time to speak with us.


New Refinance Lag Functionality Affords RiskSpan Users Flexibility in Higher Rate Environments 

ARLINGTON, Va., September 29, 2022 — RiskSpan, a leading technology company and the most comprehensive source for data management and analytics for residential mortgage and structured products, has announced that users of its award-winning Edge Platform can now fine-tune the assumed time lag between a rate-incentivized borrower’s decision to refinance and ultimate payoff. Getting this time lag right unveils a more accurate understanding of the rate incentive that borrowers responded to and thus better predictions of coming prepayments. 

The recent run-up in interest rates has caused the number of rate-incentivized mortgage refinancings to fall precipitously. Newfound operational capacity at many lenders, created by this drop in volume, means that new mortgages can now be closed in fewer days than were necessary at the height of the refi boom. This “lag time” between when a mortgage borrower becomes in-the-money to refinance and when the loan actually closes is an important consideration for MBS traders and analysts seeking to model and predict prepayment performance. 

Rather than confining MBS traders to a single, pre-set lag time assumption of 42 days, users of the Edge Platform’s Historical Performance module can now adjust the lag assumption when building their S-curves to better reflect their view of current market conditions. Using the module’s new Input section for Agency datasets, traders and analysts can further refine their approach to computing refi incentive by selecting the prevailing mortgage rate measure for any given sector (e.g., FH 30Y PMMS, MBA FH 30Y, FH 15Y PMMS and FH 5/1 PMMS) and adjusting the lag time to anywhere from zero to 99 days.   

Comprehensive details of this and other new capabilities are available by requesting a no-obligation live demo below or at riskspan.com

GET A FREE DEMO

This new functionality is the latest in a series of enhancements that is making the Edge Platform increasingly indispensable for Agency MBS traders and investors.  

###

About RiskSpan, Inc. 

RiskSpan offers cloud-native SaaS analytics for on-demand market risk, credit risk, pricing and trading. With our data science experts and technologists, we are the leader in data as a service and end-to-end solutions for loan-level data management and analytics. 

Our mission is to be the most trusted and comprehensive source of data and analytics for loans and structured finance investments. 

Rethink loan and structured finance data. Rethink your analytics. Learn more at www.riskspan.com. 

Media contact: Timothy Willis

CONTACT US


Quantifying the Impact of Climate Risk on Housing Finance 

When people speak of the risk climate poses to housing, they typically do so in qualitative and relative terms. A Florida home is at greater risk of hurricane damage than an Iowa home. Wildfires generally threaten homes in northern California more than they threaten homes in New Hampshire. And because of climate change, the risk these and other perils pose to any individual geographical area are largely viewed as higher than they were 25 years ago.

People feel comfortable speaking in these general terms. But qualitative estimates are of little practical use to mortgage investors seeking to fine-tune their pricing, prepayment, and default models. These analytical frameworks require not just reliable data but the means to translate them into actionable risk metrics.   

Physical risks and transition risks

Broadly speaking, climate risk manifests itself as a combination of physical risks and transition risks. Physical risks include “acute” disaster events, such as hurricanes, tornadoes, wildfires, and floods. Chronic risks, such as sea level rise, extreme temperatures, and drought, are experienced over a longer period. Transition risks relate to costs resulting from regulations promulgated to combat climate change and from the need to invest in new technologies designed either to combat climate change directly or mitigate its effects.

Some of the ways in which these risks impact mortgage assets are self-evident. Acute events that damage or destroy homes have an obvious effect on the performance of the underlying mortgages. Other mechanisms are more latent but no less real. Increasing costs of homeownership, caused by required investment in climate-change-mitigating technologies, can be a source of financial stress for some borrowers and affect mortgage performance. Likewise, as flood and other hazard insurance premiums adjust to better reflect the reality of certain geographies’ increasing exposure to natural disaster risk, demand for real estate in these areas could decrease, increasing the pressure on existing homeowners who may not have much cushion in their LTVs to begin with.

Mortgage portfolio risk management

At the individual loan level, these risks translate to higher delinquency risks, probability of default, loss given default, spreads, and advance expenses. At the portfolio level, the impact is felt in asset valuation, concentration risk (what percentage of homes in the portfolio are located in high-risk areas), VaR, and catastrophic tail risk.

VaR can be computed using natural hazard risk models designed to forecast the probability of individual perils for a given geography and using that probability to compute the worst property loss (total physical loss and loss net of insurance proceeds) that can be expected during the portfolio’s expected life at the 99 percent (or 95 percent) confidence level. The following figure illustrates how this works for a portfolio covering multiple geographies with varying types and likelihoods of natural hazard risk.

CONTACT US
Climate risk dashboard acute risk

These analyses can look at the exposure of an entire portfolio to all perils combined:    

Climate risk dashboard U.S.
SPEAK TO AN EXPERT

Or they can look at the exposure of a single geographic area to one peril in particular:

Climate risk dashboard Florida

Accounting for climate risk when bidding on whole loans

The risks quantified above pertain to properties that secure mortgages and therefore only indirectly to the mortgage assets themselves. Investors seeking to build whole-loan portfolios that are resilient to climate risk should consider climate risk in the context of other risk factors. Such a “property-level climate risk” approach takes into account factors such as:

  • Whether the property is insured against the peril in question
  • The estimate expected risk (and tail risk) of property damage by the peril in question
  • Loan-to-value ratio

The most prudent course of action includes a screening mechanism that includes pricing and concentration limits tied to LTV ratios. Investors may choose to invest in areas of high climate risk but only in loans with low LTV ratios. Bids should be adjusted to account for climate risk, but the amount of the adjustment can be a function of the LTV. Concentration limits should be adjusted accordingly:

Climate risk pricing adjustments

Conclusion

When assessing the impact of climate risk on a mortgage portfolio, investors need to consider and seek to quantify not just how natural hazard events will affect home values but also how they will affect borrower behavior, specifically in terms of prepayments, delinquencies, and defaults.

We are already beginning to see climate factors working their way into the secondary mortgage markets via pricing adjustments and concentration screening. It is only a matter of time before these considerations move further up into the origination process and begin to manifest themselves in pricing and underwriting policy (as flood insurance requirements already have today).

Investors looking for a place to start can begin by incorporating a climate risk score into their existing credit box/pricing grid, as illustrated above. This will help provide at least a modicum of comfort to investors that they are being compensated for these hidden risks and (at least as important) will ensure that portfolios do not become overly concentrated in at-risk areas.

GET STARTED


Get Started
Log in

Linkedin