Linkedin    Twitter   Facebook

Get Started
Log In

Linkedin

Articles Tagged with: Agency MBS

Are Recast Loans Skewing Agency Speeds?

In a previous blog, we highlighted large curtailments on loans, behavior that was driving a prepayment spike on some new-issue pools. Any large curtailment should also result in shortening the remaining term of the loan because the mortgage payment is nearly always “level-pay” for loans in a conventional pool. And we see that behavior for all mortgages experiencing large curtailments.

However, we noted that nearly half of these loans showed a subsequent extension of their remaining term back to where it would have been without the curtailment.

1

This extension occurred anywhere between zero and sixteen months after the curtailment, with a median of one month after the large payment. We presume these maturity extensions are a loan “recast,” which is explained well in a recent FAQ from Rocket Mortgage. In summary, a recast allows the borrower to lower their monthly payment after making a curtailment above some threshold, typically at least $10,000 extra principal.

Some investors may not be aware that a recast loan may remain in the trust, especially since the terms of the loan are being changed without a buyout.

2

Further, since the extension lowers the monthly payment, the trust will receive principal more slowly ex curtailment than under the original terms of the loan. This could possibly affect buyers of the pool after the curtailment and before the recast.

While the number of recast loans is small, we found it interesting that the loan terms are changed without removing the loans from the pool. We identified nearly 7,800 loans that were issued between 2021 Q4 and 2022 Q1 and had both a curtailment greater than $10,000 and a subsequent re-extension of loan term.

Of these loans, the typical time to term-recast is zero to two months, with 1% of the loans recasting a year or more after the curtailment.

Chart

Some of these loans reported multiple curtailments and recasts, with loan 9991188863 in FR QD1252 extending on three separate occasions after three large curtailments. It seems the door is always open to extension.

For loans that recast their maturities after a curtailment, 85% had extensions between 10 and 25 years.

Chart

Large curtailments are uncommon and term-recasts comprise roughly half of loans in our sample with large curtailments, so term recasts will typically have only a small effect on pool cash flows, extending the time of principal receipt ex curtailment and possibly changing borrower behavior.

3

For large pools, any effect will be typically exceeded by prepayments due to turnover.

However, for some smaller pools the WAM extension due to recast is noticeable. We identified dozens of pools whose WAM extended after a recast of underlying loan(s). The table below shows just a few examples. All of these pools are comparatively small, which is to be expected since just one or two individual loan recasts can have an outsized effect on a small pool’s statistics.

Pool ID Factor Date Current Face Extension (months)
FR QD7617 7/2022 20,070,737 6
FR QD0006 1/2022 15,682,775 5
FN CB3367 11/2022 14,839,919 5
FR QD5736 7/2022 10,916,959 6
FN BU0581 4/2022 10,164,000 6
FR QD4492 6/2022 3,113,532 16
FN BV2076 5/2022 3,165,509 18
FR QD6013 7/2022 3,079,250 22




The Curious Case of Curtailments

With more than 90% of mortgages out-of-the-money from a refinancing standpoint, the MBS market has rightly focused on activities that affect discounts, including turnover and to a much lesser extent cash-out refinancings. In this analysis we examine the source of fast speeds on new issue loans and pools.

As we dig deeper on turnover, we notice a curious behavior related to curtailments that has existed for several years but gone largely ignored in recent refi-dominated environments. Curtailment activity, especially higher-than-expected curtailments on new-production mortgages, has steadily gotten stronger in more recent vintages.

For this analysis we define a curtailment as any principal payment that is larger than the contractual monthly payment but smaller than the remaining balance of the loan, which is more typically classified as payoff due to either a refinancing or house sale. In the first graph, we show curtailment speeds for new loans with note rates that were not refinanceable on a rate/term basis.

1

As you can see, the 2022 vintage shows a significant uptick in curtailments in the second month. Other recent vintages show lower but still significant early-month curtailments, whereas pre-2018 vintages show very little early curtailment activity.

Curtailment CPR by WALA

Digging deeper, we separate the loans by purpose: purchase vs. refi. Curtailment speeds are significantly higher among purchase loans than among refis in the first six months, with a noticeable spike at months two and three.

Age vs Curtailment CPR

Focusing on purchase loans, we notice that the behavior is most noticeable for non-first-time homebuyers (non-FTHB) and relatively absent with FTHBs. The 2022-vintage non-FTHB paid nearly 6 CPR in their second month of borrowing.

Age vs Curtaiment CPR

What drives this behavior? While it’s impossible to say for certain, we believe that homeowners purchasing new homes are using proceeds from the sale of the previous home to partially pay off their new loan, with the sale of the previous loan coming a month or so after the close of the first loan.

How pervasive is this behavior? We looked at purchase loans originated in 2022 where the borrower was not a first-time home buyer and noted that 0.5% of the loans account for nearly 75% of the total curtailment activity on a dollar basis. That means these comparatively high, early speeds (6 CPR and higher on some pools) are driven by a small number of loans, with that vast majority of loans showing no significant curtailments in the early months.

Chart

High-curtailment loans show large payments relative to their original balances, ranging from 5% to 85% of the unpaid balance with a median value of 25%. We found no pattern with regard to either geography or seller/servicer. Looking at mortgage note rates, 80% of these high-curtailment loans were at 3.5% or lower and only 10% of these borrowers had a positive refinancing incentive at all. Only 1.5% had incentives above 25bp, with a maximum incentive of just 47bp. These curtailments are clearly not explained by rate incentive.

The relatively rarity of these curtailments means that, while in aggregate non-FTHBs are paying nearly 6 CPR in the early months, actual results within pools may vary greatly. In the chart below, we show pool speeds for 2022-vintage majors/multi-lenders, plotted against the percentage of the pool’s balance associated with non-FTHB purchases. We controlled for refi incentive by looking at pools that were out of the money by 0bp to 125bp. As the percentage of non-FTHBs in a pool increases, so does early prepayment speed, albeit with noise around the trend.

Graph

We observe that a very small percentage of non-FTHB borrowers are making large curtailment payments in the first few months after closing and that these large payments translate into a short-term pop in speeds on new production at- or out-of-the-money pools. Investors looking to take advantage of this behavior on discount MBS should focus on pools with high non-FTHB borrowers.


Video: Mortgage Market Evolution

As any mortgage market veteran will attest, the distribution and structure of the mortgage market is constantly in flux. When rates fall, at-the-money coupons become premiums, staffing at originators rises, the volume of refis increase, and the distribution and seasoning of coupons change.

And then the cycle turns. Rates rise. Premiums become discounts. Originators cut staff and prepay speeds plummet. But this too changes, and longtime participants will recognize echoes of 1994 or 1999-2000 in today’s washout.

The brief video animation below tracks the evolution of the mortgage market since 2006, with an eye on distribution and seasoning of borrowers.

Contact us

Temporary Buydowns are Back. What Does This Mean for Speeds?

Mortgage buydowns are having a deja-vu moment. Some folks may recall mortgages with teaser rates in the pre-crisis period. Temporary buydowns are similar in concept. Recent declines notwithstanding, mortgage rates are still higher than they have been in years. Housing remains pricey. Would-be home buyers are looking for any help they can get. While on the other hand, with an almost non-existent refi market, mortgage originators are trying to find innovative ways to keep the production machine going. Conditions are ripe for lender and/or builder concessions that will help close the deal.

Enter the humble “temporary” mortgage interest rate buydown. A HousingWire article last month addressed the growing trend. It’s hard to turn on the TV without being bombarded with ads for Rocket Mortgage’s “Inflation Buster” program. Rocket Mortgage doesn’t use the term temporary buydown in its TV spots, but that is what it is.

Buydowns, in general, refer to when a borrower pays “points” upfront to reduce the mortgage rate to a level where they can afford the monthly payment. The mortgage rate has been “bought down” from its original rate for the entire life of the mortgage by paying a lumpsum upfront. Temporary Buydowns, on the other hand, come in various shapes and sizes, but the most common ones are a “2 – 1” (a 2-percent interest rate reduction in the first year and a 1-percent reduction in year two) and a “1 – 0” (a 1-percent interest rate reduction in the first year only). In these situations, the seller, or the builder, or the lender or a combination thereof put-up money to cover the difference in interest rate payments between the original mortgage rate and the reduced mortgage rate. In the 2-1 example above, the mortgage rate is reduced by 2% for the first year and then steps up by 1% in the second year and then steps up by another 1% in the 3rd year to reach the actual mortgage rate at origination. So, the interest portion of the monthly mortgage payments are “subsidized” for the first two years and then revert to the full monthly payment. Given the inflated rental market, these programs can make purchasing more advantageous than renting (for home seekers trying to decide between the two options). They can also make purchasing a home more affordable (temporarily, at least) for would-be buyers who can’t afford the monthly payment at the prevailing mortgage rate. It essentially buys them time to refinance into a lower rate should interest rates fall over the subsidized time frame or they may be expecting increased income (raises, business revenue) in the future which will allow them to afford the unsubsidized monthly payment.

Temporary buydowns present an interesting situation for prepayment and default modelers. Most borrowers with good credit behave similarly to refinance incentives, barring loan size and refi cost issues. While permanent buydowns tend to exhibit slower speeds when they come in the money by a small amount since the borrower needs to make a cost/benefit decision about recouping the upfront money they put down and the refi costs associated with the new loan. Their breakeven point is going to be lower by 25bps or 50bps from their existing mortgage rate. So, their response to mortgage rates dropping will be slower than borrowers with similar mortgage rates who didn’t pay points upfront. Borrowers with temporary buydowns will be very sensitive to any mortgage rate drops and will refinance at the first opportunity to lock in a lower rate before the “subsidy” expires. Hence, such mortgages are expected to prepay at higher speeds then other counterparts with similar rates. In essence, they behave like ARMs when they approach their reset dates.

When rates stay static or increase, temporary buydowns will behave like their counterparts except when they get close to the reset dates and will see faster speeds. Two factors would contribute to this phenomenon. The most obvious reason is that temporary buydown borrowers will want to refinance into the lowest rate available at the time of reset (perhaps an ARM).  The other possibility is that some of these borrowers may not be able refi because of DTI issues and may default. Such borrowers may also be deemed “weaker credits” because of the subsidy that they received. This increase in defaults would elevate their speeds (increased CBRs) relative to their counterparts.

So, for the reasons mentioned above, temporary buydown mortgages are expected to be the faster one among the same mortgage rate group. In the table below we separate borrowers with the same mortgage rate into 3 groups: 1) those that got a normal mortgage at the prevailing rate and paid no points, 2) those that paid points upfront to get a permanent lower rate and 3) those who got temporary lower rates subsidized by the seller/builder/lender. Obviously, the buydowns occurred in higher rate environments but we are considering 3 borrower groups with the same mortgage rate regardless of how they got that rate. We are assuming that all 3 groups of borrowers currently have a 6% mortgage. We present the expected prepay behavior of all 3 groups in different mortgage rate environments:

*Turnover++ means faster due to defaults or at reset
 Rate Rate Shift 6% (no pts)

Buydown to 6%(borrower-paid)

Buydown to 6% (lender-paid)  
7.00% +100 Turnover Turnover Turnover++*  
6.00% Flat Turnover Turnover Faster (at reset)  
5.75% -25 Refi Turnover Refi  
5.00% -100 Refi (Faster) Refi (Fast) Refi (Fastest)  

Overall, temporary buydowns are likely to exhibit the most rate sensitivity. As their mortgage rates reset higher, they will behave like ARMs and refi into any other lower rate option (5/1 ARM) or possibly default. In the money, they will be the quickest to refi.

Contact Us

Incorporating Covid-Era Mortgage Data Without Skewing Your Models

What we observed during Covid represents a radical departure from what we observed pre-Covid. To what extent do these observations impact long-term trends observed for mortgage performance? Should these data fundamentally impact the way in which we think about the effects borrower, loan and macroeconomic characteristics have on mortgage performance? Or do we need to simply account for them as a short-term blip?


The process of modeling mortgage defaults and prepayments typically begins with identifying long-term trends and reference values. These aid in creating the baseline forecasts that undergird the model in its most simplistic form. Modelers then begin looking for deviations from this baseline created by specific loan, borrower, and property characteristics, as well as by key macroeconomic variables.

Identifying these relationships enables modelers to begin quantifying the extent to which micro factors like income, credit score, and loan-to-value ratios interact with macro indicators like the unemployment rate to cause prepayments and defaults to depart from their baseline. Data observations aggregated over extended periods give a comprehensive picture possible of these relationships.

In practice, the human behavior underlying these and virtually all economic models tends to change over time. Modelers account for this by making short-term corrections based on observations from the most recent time periods. This approach of tweaking long-term trends based on recent performance works reasonably well under most circumstances. One could reasonably argue, however, that tweaking existing models using performance data collected during the Covid-19 era presents a unique set of challenges.

What was observed during Covid represents a radical departure from what was observed pre-Covid. To what extent do these observations impact long-term trends and reference values. Should these data fundamentally impact the way in which we think about the effects borrower, loan and macroeconomic characteristics have on mortgage performance? Or do we need to simply account for them as a short-term blip?

SPEAK TO AN EXPERT

How Covid-era mortgage data differs

When it comes to modeling mortgage performance, we generally think of three sets of factors: 1) macroeconomic conditions, 2) loan and borrower characteristics, and 3) property characteristics. In determining how to account for Covid-era data in our modeling, we first must attempt to evaluate its impact on these factors. Three macroeconomic factors have played an especially significant role recently. First, as reflected in the chart below, we experienced a significant home-price decline during the 2008 financial crisis but a steady increase since then. Covid Era

Second, mortgage rates continued to decline for the most part during the crisis and beyond. There were brief periods when they increased, but they remained low by and large. Covid Era

The third piece is the unemployment rate. Unemployment spiked to around 10 percent during the financial crisis and then slowly declined. Covid Era

When home prices declined in the past, we typically saw the government attempt to respond to it by reducing interest rates. This created something of a correlation between home prices and mortgage rates. Looking at this from a purely statistical viewpoint, the only thing the historical data shows is that falling home prices bring about a decline in mortgage rates. (And rising home prices bring about higher interest rates, though to a far lesser degree.) We see something similar with unemployment. Falling unemployment is correlated with rising home prices.

But then Covid arrives and with it some things we had not observed previously. All the “known” correlations among these macroeconomic variables broke down. For example, the unemployment rate spikes to 15 percent within just a couple of months and yet has no negative impact at all on home prices. Home prices, in fact, continue to rise, supported by the very generous unemployment benefits provided during Covid pandemic.

This greatly complicates the modeling. Here we had these variable relationships that appeared steady over a period of decades, and all of our modeling was being done (knowingly or unknowingly) relying on these correlations, and suddenly all these correlations are breaking down.

What does this mean for forecasting prepayments? The following chart shows prepayments over time by vintage. We see extremely high prepayment rates between early 2020 (the start of the pandemic) and early 2022 (when rates started rising). This makes sense.

Covid Era

Look at what happens to our forecasts, however, when rates begin to increase. The following chart reflects the models predicting a much steeper drop-off in prepayments than what was actually observed for a July 2021 issuance Fannie Mae major of coupon 2.0. These mortgage loans with no refinance incentive are prepaying faster than what would be expected based on the historical data.

Covid Era

What is causing this departure?

The most plausible explanation relates to an observed increase in cash-out refinances caused by the recent run-up in home prices and resulting in many homeowners suddenly finding themselves with a lot of home equity to tap into.  Pre-Covid , cash-outs accounted for between a third and a quarter of refinances. Now, with virtually no one in the money for a rate-and-term refinance, cash-outs are accounting for over 80 percent of them.

We learn from this that we need to incorporate the amount of home equity gained by borrowers into our prepayment modeling.

 Modeling Credit Performance

Of course, Covid’s impacts were felt even more acutely in delinquency rates than in prepays. As the following chart shows, a borrower that was 1-month delinquent during Covid had a 75 percent probability of being 2-months delinquent the following month.

Covid Era

This is clearly way outside the norm of what was observed historically and compels us to ask some hard questions when attempting to fit a model to this data.

The long-term average of “two to worse” transitions (the percentage of 60-day delinquencies that become 90-day delinquencies (or worse) the following month) is around 40 percent. But we’re now observing something closer to 50 percent. Do we expect this to continue in the future, or do we expect it to revert back to the longer-term average. We observe a similar issue in other transitions, as illustrated below. The rates appear to be stabilizing at higher levels now relative to where they were pre-Covid. This is especially true of more serious delinquencies.

Covid Era

How do we respond to this? What is the best way to go about combining this pre-Covid and post-Covid data?

Principles for handling Covid-era mortgage data

One approach would be to think about Covid data as outliers that should be ignored. At the other extreme, we could simply accept the observed data and incorporate it without any special considerations. A split-the-difference third approach would have us incorporate the new data with some sort of weighting factor for use in future stress scenarios without completely casting aside the long-term reference values that had stood the test of time prior to the pandemic.

This third approach requires us to apply the following guiding principles:

  1. Assess assumed correlations between driving macro variables: For example, don’t allow the model to assume that increasing unemployment will lead to higher home prices just because it happened once during a pandemic.
  2. Choose short-term calibrations carefully. Do not allow models to be unduly influenced by blindly giving too much weight to what has happened in the past two years.
  3. Determine whether the new data in fact reflects a regime shift. How long will the new regime last?
  4. Avoid creating a model that will break down during future unusual periods.
  1. Prepare for other extremes. Incorporate what was learned into future stress testing
  1. Build models that allow sensitivity analyses and are easy to change/tune. Models need to be sufficiently flexible that they can be tuned in response to macroeconomic events in a matter of weeks, rather than taking months or years to design and build an entirely new model.

Covid-era mortgage data presents modelers with a unique challenge. How to appropriately consider it without overweighting it. These general guidelines are a good place to start. For ideas specific to your portfolio, contact a RiskSpan representative.

SPEAK TO AN EXPERT


Bumpy Road Ahead for GNMA MBS?

In a recent webinar, RiskSpan’s Fowad Sheikh engaged in a robust discussion with two of his fellow industry experts, Mahesh Swaminathan of Hilltop Securities and Mike Ortiz of DoubleLine Group, to address the likely road ahead for Ginnie Mae securities performance.


The panel sought to address the following questions:

  • How will the forthcoming, more stringent originator/servicer financial eligibility requirements affect origination volumes, buyouts, and performance?
  • Who will fill the vacuum left by Wells Fargo’s exiting the market?
  • What role will falling prices play in delinquency and buyout rates?
  • What will be the impact of potential Fed MBS sales.

This post summarizes some the group’s key conclusions. A recording of the webinar in its entirety is available here.

GET STARTED

Wells Fargo’s Departure

To understand the the likely impact of Wells Fargo’s exit, it is first instructive to understand the declining market share of banks overall in the Ginnie Mae universe. As the following chart illustrates, banks as a whole account for just 11 percent of Ginnie Mae originations, down from 39 percent as recently as 2015.

Drilling down further, the chart below plots Wells Fargo’s Ginnie Mae share (the green line) relative to the rest of the market. As the chart shows, Wells Fargo accounts for just 3 percent of Ginnie Mae originations today, compared to 15 percent in 2015. This trend of Wells Fargo’s declining market share extends all the way back to 2010, when it accounted for some 30 percent of Ginnie originations.

As the second chart below indicates, Wells Fargo’s market share, even among banks has also been on a steady decline.

GeT A Free Trial or Demo

Three percent of the overall market is meaningful but not likely to be a game changer either in terms of origination trends or impact on spreads. Wells Fargo, however, continues to have an outsize influence in the spec pool market. The panel hypothesized that Wells’s departure from this market could open the door to other entities claiming that market share. This could potentially affect prepayment speeds – especially if Wells is replaced by non-bank servicers, which the panel felt was likely given the current non-bank dominance of the top 20 (see below) – since Wells prepays have traditionally been slightly better than the broader market.

The panel raised the question of whether the continuing bank retreat from Ginnie Mae originations would adversely affect loan quality. As basis for this concern, they cited the generally lower FICO scores and higher LTVs that characterize non-bank-originated Ginnie Mae mortgages (see below). 

These data notwithstanding, the panel asserted that any changes to credit quality would be restricted to the margins. Non-bank servicers originate a higher percentage of lower-credit-quality loans (relative to banks) not because non-banks are actively seeking those borrowers out and eschewing higher-credit-quality borrowers. Rather, banks tend to restrict themselves to borrowers with higher credit profiles. Non-banks will be more than happy to lend to these borrowers as banks continue to exit the market.

Effect of New Eligibility Requirements

The new capital requirements, which take effect a year from now, are likely to be less punitive than they appear at first glance. With the exception of certain monoline entities – say, those with almost all of their assets concentrated in MSRs – the overwhelming majority of Ginnie Mae issuers (banks and non-banks alike) are going to be able meet them with little if any difficulty.

Ginnie Mae has stated that, even if the new requirements went into effect tomorrow, 95 percent of its non-bank issuers would qualify. Consequently, the one-year compliance period should open the door for a fairly smooth transition.

To the extent Ginnie Mae issuers are unable to meet the requirements, a consolidation of non-bank entities is likely in the offing. Given that these institutions will likely be significant MSR investors, the potential increase in MSR sales could impact MSR multiples and potentially disrupt the MSR market, at least marginally.

Potential Impacts of Negative HPA

Ginnie Mae borrowers tend to be more highly leveraged than conventional borrowers. FHA borrowers can start with LTVs as high as 97.5 percent. VA borrowers, once the VA guarantee fee is rolled in, often have LTVs in excess of 100 percent. Similar characteristics apply to USDA loans. Consequently, borrowers who originated in the past two years are more likely to default as they watch their properties go underwater. This is potentially good news for investors in discount coupons (i.e., investors who benefit from faster prepay speeds) because these delinquent loans will be bought out quite early in their expected lives.

More seasoned borrowers, in contrast, have experienced considerable positive HPA in recent years. The coming forecasted decline should not materially impact these borrowers’ performance. Similarly, if HPD in 2023 proves to be mild, then a sharp uptick in delinquencies is unlikely, regardless of loan vintage or LTV. Most homeowners make mortgage payments because they wish to continue living in their house and do not seriously consider strategic defaults. During the financial crisis, most borrowers continued making good on their mortgage obligations even as their LTVs went as high as the 150s.

Further, the HPD we are likely to encounter next year likely will not have the same devastating effect as the HPD wave that accompanied the financial crisis. Loans on the books today are markedly different from loans then. Ginnie Mae loans that went bad during the crisis disproportionately included seller-financed, down-payment-assistance loans and other programs lacking in robust checks and balances. Ginnie Mae has instituted more stringent guidelines in the years since to minimize the impact of bad actors in these sorts of programs.

This all assumes, however, that the job market remains robust. Should the looming recession lead to widespread unemployment, that would have a far more profound impact on delinquencies and buyouts than would HPD.

Fed Sales

The Fed’s holdings (as of 9/21, see chart below) are concentrated around 2 percent and 2.5 percent coupons. This raises the question of what the Fed’s strategy is likely to be for unwinding its Ginnie Mae position.

Word on the street is that Fed sales are highly unlikely to happen in 2022. Any sales in 2023, if they happen at all, are not likely before the second half of the year. The panel opined that the composition of these sales is likely to resemble the composition of the Fed’s existing book – i.e., mostly 2s, 2.5s, and some 3s. They have the capacity to take a more sophisticated approach than a simple pro-rata unwinding. Whether they choose to pursue that is an open question.

The Fed was a largely non-economic buyer of mortgage securities. There is every reason to believe that it will be a non-economic seller, as well, when the time comes. The Fed’s trading desk will likely reach out to the Street, ask for inquiry, and seek to pursue an approach that is least disruptive to the mortgage market.

Conclusion

On closer consideration, many of these macro conditions (Wells’s exit, HPD, enhanced eligibility requirements, and pending Fed sales) that would seem to portend an uncertain and bumpy road for Ginnie Mae investors, may turn out to be more benign than feared.

Conditions remain unsettled, however, and these and other factors certainly bear watching as Ginnie Mae market participants seek to plot a prudent course forward.


New Refinance Lag Functionality Affords RiskSpan Users Flexibility in Higher Rate Environments 

ARLINGTON, Va., September 29, 2022 — RiskSpan, a leading technology company and the most comprehensive source for data management and analytics for residential mortgage and structured products, has announced that users of its award-winning Edge Platform can now fine-tune the assumed time lag between a rate-incentivized borrower’s decision to refinance and ultimate payoff. Getting this time lag right unveils a more accurate understanding of the rate incentive that borrowers responded to and thus better predictions of coming prepayments. 

The recent run-up in interest rates has caused the number of rate-incentivized mortgage refinancings to fall precipitously. Newfound operational capacity at many lenders, created by this drop in volume, means that new mortgages can now be closed in fewer days than were necessary at the height of the refi boom. This “lag time” between when a mortgage borrower becomes in-the-money to refinance and when the loan actually closes is an important consideration for MBS traders and analysts seeking to model and predict prepayment performance. 

Rather than confining MBS traders to a single, pre-set lag time assumption of 42 days, users of the Edge Platform’s Historical Performance module can now adjust the lag assumption when building their S-curves to better reflect their view of current market conditions. Using the module’s new Input section for Agency datasets, traders and analysts can further refine their approach to computing refi incentive by selecting the prevailing mortgage rate measure for any given sector (e.g., FH 30Y PMMS, MBA FH 30Y, FH 15Y PMMS and FH 5/1 PMMS) and adjusting the lag time to anywhere from zero to 99 days.   

Comprehensive details of this and other new capabilities are available by requesting a no-obligation live demo below or at riskspan.com

GET A FREE DEMO

This new functionality is the latest in a series of enhancements that is making the Edge Platform increasingly indispensable for Agency MBS traders and investors.  

###

About RiskSpan, Inc. 

RiskSpan offers cloud-native SaaS analytics for on-demand market risk, credit risk, pricing and trading. With our data science experts and technologists, we are the leader in data as a service and end-to-end solutions for loan-level data management and analytics. 

Our mission is to be the most trusted and comprehensive source of data and analytics for loans and structured finance investments. 

Rethink loan and structured finance data. Rethink your analytics. Learn more at www.riskspan.com. 

Media contact: Timothy Willis

CONTACT US


Webinar Recording: Bumpy Road Ahead for GNMA MBS?

Recorded: Thursday, September 29th | 3:30 p.m. EDT

The panel discusses the likely impact of recent, and potential future, market events on GNMA MBS. Topics for discussion will include:

  • How will the forthcoming, more stringent originator/servicer financial eligibility requirements affect origination volumes, buyouts, and performance?
  • Who will fill the vacuum left by Wells Fargo?
  • What role will falling prices play in delinquency and buyout rates?
  • What will be the impact of potential Fed MBS sales.

Presenters

Mahesh Swaminahtan, CFA

Managing Director, MBS/ABS Strategist, Hilltop Securities

Fowad Sheikh

Senior Managing Director, RiskSpan

Mike Ortiz

Agency MBS Analyst, DoubleLine Group LP

 


It’s time to move to DaaS — Why it matters for loan and MSR investors

Data as a service, or DaaS, for loans and MSR investors is fast becoming the difference between profitable trades and near misses.

Granularity of data is creating differentiation among investors. To win at investing in loans and mortgage servicing rights requires effectively managing a veritable ocean of loan-level data. Buried within every detailed tape of borrower, property, loan and performance characteristics lies the key to identifying hidden exposures and camouflaged investment opportunities. Understanding these exposures and opportunities is essential to proper bidding during the acquisition process and effective risk management once the portfolio is onboarded.

Investors know this. But knowing that loan data conceals important answers is not enough. Even knowing which specific fields and relationships are most important is not enough. Investors also must be able to get at that data. And because mortgage data is inherently messy, investors often run into trouble extracting the answers they need from it.

For investors, it boils down to two options. They can compel analysts to spend 75 percent of their time wrangling unwieldy data – plugging holes, fixing outliers, making sure everything is mapped right. Or they can just let somebody else worry about all that so they can focus on more analytical matters.

Don’t get left behind — DaaS for loan and MSR investors

It should go without saying that the “let somebody else worry about all that” approach only works if “somebody else” possesses the requisite expertise with mortgage data. Self-proclaimed data experts abound. But handing the process over to an outside data team lacking the right domain experience risks creating more problems than it solves.

Ideally, DaaS for loan and MSR investors consists of a data owner handing off these responsibilities to a third party that can deliver value in ways that go beyond simply maintaining, aggregating, storing and quality controlling loan data. All these functions are critically important. But a truly comprehensive DaaS provider is one whose data expertise is complemented by an ability to help loan and MSR investors understand whether portfolios are well conceived. A comprehensive DaaS provider helps investors ensure that they are not taking on hidden risks (for which they are not being adequately compensated in pricing or servicing fee structure).

True DaaS frees up loan and MSR investors to spend more time on higher-level tasks consistent with their expertise. The more “blocking and tackling” aspects of data management that every institution that owns these assets needs to deal with can be handled in a more scalable and organized way. Cloud-native DaaS platforms are what make this scalability possible.

Scalability — stop reinventing the wheel with each new servicer

One of the most challenging aspects of managing a portfolio of loans or MSRs is the need to manage different types of investor reporting data pipelines from different servicers. What if, instead of having to “reinvent the wheel” to figure out data intake every time a new servicer comes on board, “somebody else” could take care of that for you?

An effective DaaS provider is one not only that is well versed in building and maintain loan data pipes from servicers to investors but also has already established a library of existing servicer linkages. An ideal provider is one already set-up to onboard servicer data directly onto its own DaaS platform. Investors achieve enormous economies of scale by having to integrate with a single platform as opposed to a dozen or more individual servicer integrations. Ultimately, as more investors adopt DaaS, the number of centralized servicer integrations will increase, and greater economies will be realized across the industry.

Connectivity is only half the benefit. The DaaS provider not only intakes, translates, maps, and hosts the loan-level static and dynamic data coming over from servicers. The DaaS provider also takes care of QC, cleaning, and managing it. DaaS providers see more loan data than any one investor or servicer. Consequently, the AI tools an experienced DaaS provider uses to map and clean incoming loan data have had more opportunities to learn. Loan data that has been run through a DaaS provider’s algorithms will almost always be more analytically valuable than the same loan data processed by the investor alone.  

Investors seeking to increase their footprint in the loan and MSR space obviously do not wish to see their data management costs rise in proportion to the size of their portfolios. Outsourcing to a DaaS provider that specializes in mortgages, like RiskSpan, helps investors build their book while keeping data costs contained.

Save time and money – Make better bids

For all these reasons, DaaS is unquestionably the future (and, increasingly, the present) of loan and MSR data management. Investors are finding that a decision to delay DaaS migration comes with very real costs, particularly as data science labor becomes increasingly (and often prohibitively) expensive.

The sooner an investor opts to outsource these functions to a DaaS provider, the sooner that investor will begin to reap the benefits of an optimally cost-effective portfolio structure. One RiskSpan DaaS client reported a 50 percent reduction in data management costs alone.

Investors continuing to make do with in-house data management solutions will quickly find themselves at a distinct bidding disadvantage. DaaS-aided bidders have the advantage of being able to bid more competitively based on their more profitable cost structure. Not only that, but they are able to confidently hone and refine their bids based on having a better, cleaner view of the portfolio itself.

Rethink your mortgage data. Contact RiskSpan to talk about how DaaS can simultaneously boost your profitability and make your life easier.

REQUEST A DEMO


Senior Home Equity Rises Again to $11.12 Trillion

Senior home equity rises again. Homeowners 62 and older saw their housing wealth grow by an estimated 4.9 percent ($520 billion) during the first quarter of 2022 to a record $11.1 trillion according to the latest quarterly release of the NRMLA/RiskSpan Reverse Mortgage Market Index.

Historical Changes in Aggregate Senior Home Values Q1 2000 - Q1 2022

The NRMLA/RiskSpan Reverse Mortgage Market Index (RMMI) rose to 388.83, another all-time high since the index was first published in 2000. The increase in older homeowners’ wealth was mainly driven by an estimated $563 billion (4.4 percent) increase in home values, offset by a $43 billion (2.1 percent) increase in senior-held mortgage debt.

For a comprehensive commentary, please see NRMLA’s press release.


How RiskSpan Computes the RMMI

To calculate the RMMI, RiskSpan developed an econometric tool to estimate senior housing value, mortgage balances, and equity using data gathered from various public resources. These resources include the American Community Survey (ACS), Federal Reserve Flow of Funds (Z.1), and FHFA housing price indexes (HPI). The RMMI represents the senior equity level at time of measure relative to that of the base quarter in 2000.[1] 

A limitation of the RMMI relates to Non-consecutive data, such as census population. We use a smoothing approach to estimate data in between the observable periods and continue to look for ways to improve our methodology and find more robust data to improve the precision of the results. Until then, the RMMI and its relative metrics (values, mortgages, home equities) are best analyzed at a trending macro level, rather than at more granular levels, such as MSA.


[1] There was a change in RMMI methodology in Q3 2015 mainly to calibrate senior homeowner population and senior housing values observed in 2013 American Community Survey (ACS).


Get Started
Log in

Linkedin   

risktech2024