Linkedin    Twitter   Facebook

Get Started
Get a Demo
Articles Tagged with: Mortgage and Structured Finance Markets

Automated Legal Disclosure Generator for Mortgage and Asset-Backed Securities

Issuing a security requires a lot of paperwork. Much of this paperwork consists of legal disclosures. These disclosures inform potential investors about the collateral backing the bonds they are buying. Generating, reviewing, and approving these detailed disclosures is hard and takes a lot of time – hours and sometimes days. RiskSpan has developed an easy-to-use legal disclosure generator application that makes it easier, reducing the process to minutes.

RiskSpan’s Automated Legal Disclosure Generator for Mortgage and Asset-Backed Securities automates the generation of prospectus-supplements, pooling and servicing agreements, and other legal disclosure documents. These documents contain a combination of static and dynamic legal language, data, tables, and images.  

The Disclosure Generator draws from a collection of data files. These files contain collateral-, bond-, and deal-specific information. The Disclosure Generator dynamically converts the contents of these files into legal disclosure language based on predefined rules and templates. In addition to generating interim and final versions of the legal disclosure documents, the application provides a quick and easy way of making and tracking manual edits to the documents. In short, the Disclosure Generator is an all-inclusive, seamless, end-to-end system for creating, editing and tracking changes to legal documents for mortgage and asset-backed securities.   

The Legal Disclosure Generator’s user interface supports:  

  1. Simultaneous uploading of multiple data files.
  2. Instantaneous production of the first (and subsequent) drafts of legal documents, adhering to the associated template(s).
  3. A user-friendly editor allowing manual, user-level language and data changes. Users apply these edits either directly to a specific document or to the underlying data template itself. Template updates carry forward to the language of all subsequently generated disclosures. 
  4. A version control feature that tracks and retains changes from one document version to the next.
  5. An archiving feature allowing access to previously generated documents without the need for the original data files.
  6. Editing access controls based on pre-defined user level privileges.
CONTACT US

Overview

RiskSpan’s Automated Legal Disclosure Generator for Mortgage and Asset-Backed Securities enables issuers of securitized assets to create legal disclosures efficiently and quickly from raw data files.

The Legal Disclosure Generator is easy and intuitive to use. After setting up a deal in the system, the user selects the underlying collateral- and bond-level data files to create the disclosure document. In addition to the raw data related to the collateral and bonds, these data files also contain relevant waterfall payment rules. The data files can be in any format — Excel, CSV, text, or even custom file extensions. Once the files are uploaded, the first draft of the disclosures can be easily generated in just a few seconds. The system takes the underlying data files and creates a draft of the disclosure document seamlessly and on the fly.  In addition, the Legal Disclosure Generator reads custom scripts related to waterfall models and converts them into waterfall payment rules.

Here is a sample of a disclosure document created from the system.


REQUEST A DEMO

Blackline Version(s)

In addition to creating draft disclosure documents, the Legal Disclosure Generator enables users to make edits and changes to the disclosures on the fly through an embedded editor. The Disclosure Generator saves these edits and applies them to the next version. The tool creates blackline versions with a single integrated view for managing multiple drafts.

The following screenshot of a sample blackline version illustrates how users can view changes from one version to the next.

Tracking of Drafts

The Legal Disclosure Generator keeps track of a disclosure’s entire version history. The system enables email of draft versions directly to the working parties, and additionally retains timestamps of these emails for future reference.

The screenshot below shows the entire lifecycle of a document, from original creation to print, with all interim drafts along the way. 


Automated QC System

The Legal Disclosure Generator’s automated QC system creates a report that compares the underlying data file(s) to the data that is contained in the legal disclosure. The automated QC process ensures that data is accurate and reconciled.

Downstream Consumption

The Legal Disclosure Generator creates a JSON data file. This consolidated file consists of collateral and bond data, including waterfall payment rules. The data files are made available for downstream consumption and can also be sent to Intex, Bloomberg, and other data vendors. One such vendor noted that this JSON data file has enabled them to model deals in one-third the time it took previously.

Self-Serve System

The Legal Disclosure Generator was designed with the end-user in mind. Users can set up the disclosure language by themselves and edit as needed, with little or no outside help.

The ‘System’ Advantage

  • Remove unnecessary, manual, and redundant processes
  • Huge Time Efficiency – 24 Hours vs 2 Mins (Actual time savings for a current client of the system)
  • Better Managed Processes and Systems
  • Better Resource Management – Cost Effective Solutions
  • Greater Flexibility
  • Better Data Management – Inbuilt QCs


LEARN MORE

Striking a Proper Balance: ESG for Structured Finance

The securitization market continues to wrestle with the myriad of approaches and lack of standards in identifying and reporting ESG factors in transactions and asset classes. But much needed guidance is on the way as industry leaders work toward a consensus on the best way to report ESG for structured finance.  

RiskSpan gathered with other key industry players tackling these challenges at this month’s third annual Structured Finance Association ESG symposium in New York City. The event identified a number of significant strides taken toward shaping an industry-standard ESG framework and guidelines.  

Robust and engaging discussions across a variety of topics illustrated the critical need for a thoughtful approach to framework development. We observed a broad consensus around the notion that market acceptance would require any solution to be data supported and fully transparent. 

Much of the discussion revolved around three recurring themes: Finding a workable balance between the institutional desire for portfolio-specific measures based on raw data and the market need for a standardized scoring mechanism that everybody understands, maintaining data privacy, and assessing tradeoffs between the societal benefits of ESG investing and the added risk it can pose to a portfolio. 

Striking the Right Balance: Institution-Specific Measures vs. Industry-Standard Asset Scoring 

When it comes to disclosure and reporting, one point on a spectrum does not fit all. Investors and asset managers vary in their ultimate reporting needs and approach to assessing ESG and impact investing. On the one hand, having raw data to apply their own analysis or specific standards can be more worthwhile to individual institutions. On the other, having well defined standards or third-party ESG scoring systems for assets provides greater certainty and understanding to the market as a whole.  

Both approaches have value.

Everyone wants access to data and control over how they view the assets in their portfolio. But the need for guidance on what ESG impacts are material and relevant to structured finance remains prominent. Scores, labels, methodologies, and standards can give investors assurance a security contributes to meeting their ESG goals. Investors want to know where their money is going and if it is meaningful.

Methodologies also have to be explainable. Though there was agreement that labeled transactions are not always necessary (or achievable), integration of ESG factors in the decision process is. Reporting systems will need to link underlying collateral to external data sources to calculate key metrics required by a framework while giving users the ability to drill down to meet specific and granular analytical needs.    

Data Privacy

Detailed analysis of underlying asset data, however, highlights a second key issue: the tradeoff between transparency and privacy, particularly for consumer-related assets. Fiduciary and regulatory responsibility to protect disclosure of non-public personally identifiable information limits investor ability to access loan-level data.

While property addresses provide the greatest insight to climate risk and other environmental factors, concerns persist over methods that allow data providers to triangulate and match data from various sources to identify addresses. This in turn makes it possible to link sensitive credit information to specific borrowers.

The responsibility to summarize and disclose metrics required by the framework falls to issuers. The largest residential issuers already appreciate this burden. These issuers have expressed a desire to solve these issues and are actively looking at what they can do to help the market without sacrificing privacy. Data providers, reporting systems, and users will all need to consider the guardrails needed to adhere to source data terms of use.   

Assessing Impact versus Risk

Another theme arising in nearly all discussions centered on assessing ESG investment decisions from the two sometimes competing dimensions of impact and risk and considering whether tradeoffs are needed to meet a wide variety of investment goals. Knowing the impact the investment is making—such as funding affordable housing or the reduction of greenhouse gas emissions—is fundamental to asset selection or understanding the overall ESG position.

But what risks/costs does the investment create for the portfolio? What is the likely influence on performance?

The credit aspect of a deal is distinct from its ESG impact. For example, a CMBS may be socially positive but rent regulation can create thin margins. Ideally, all would like to maximize positive impact but not at the cost of performance, a strategy that may be contributing now to an erosion in greeniums. Disclosures and reporting capabilities should be able to support investment analyses on these dimensions.  

A disclosure framework vetted and aligned by industry stakeholders, combined with robust reporting and analytics and access to as much underlying data as possible, will give investors and asset managers certainty as well as flexibility to meet their ESG goals.   

Contact us

Why Climate Risk Matters for Mortgage Loan & MSR Investors 

The time has come for mortgage investors to start paying attention to climate risk.

Until recently, mortgage loan and MSR investors felt that they were largely insulated from climate risk. Notwithstanding the inherent risk natural hazard events pose to housing and the anticipated increased frequency of these events due to climate change, it seemed safe to assume that property insurers and other parties in higher loss position were bearing those risks. 

In reality, these risks are often underinsured. And even in cases where property insurance is adequate, the fallout has the potential to hit investor cash flows in a variety of ways. Acute climate events like hurricanes create short-term delinquency and prepayment spikes in affected areas. Chronic risks such as sea level rise and increased wildfire risk can depress housing values in areas most susceptible to these events. Potential impacts to property insurance costs, utility costs (water and electricity in areas prone to excessive heat and drought, for example) and property taxes used to fund climate-mitigating infrastructure projects all contribute to uncertainty in loan and MSR modeling. 

Moreover, dismissing climate risk “because we are in fourth loss position” should be antithetical to any investor claiming to espouse ESG principles. After all, consider who is almost always in the first loan position – the borrower. Any mortgage investment strategy purporting to be ESG friendly must necessarily take borrower welfare into account. Dismissing climate risk because borrowers will bear most of the impact is hardly a socially responsible mindset. This is particularly true when a disproportionate number of borrowers prone to natural hazard risk are disadvantaged to begin with. 

Hazard and flood insurers typically occupy the loss positions between borrowers and investors. Few tears are shed when insurers absorb losses. But society at large ultimately pays the price when losses invariably lead to higher premiums for everybody.    

Evaluating Climate Exposure

For these and other reasons, natural hazards pose a systemic risk to the entire housing system. For mortgage loan and MSR investors, it raises a host of questions. Among them: 

  1. What percentage of the loans in my portfolio are susceptible to flood risk but uninsured because flood maps are out of date? 
  2. How geographically concentrated is my portfolio? What percentage of my portfolio is at risk of being adversely impacted by just one or two extreme events? 
  3. What would the true valuation of my servicing portfolio be if climate risk were factored into the modeling?  
  4. What will the regulatory landscape look like in coming years? To what extent will I be required to disclose the extent to which my portfolio is exposed to climate risk? Will I even know how to compute it, and if so, what will it mean for my balance sheet? 

 

Incorporating Climate Data into Investment Decision Making

Forward-thinking mortgage servicers are at the forefront of efforts to get their arms around the necessary data and analytics. Once servicers have acquired a portfolio, they assess and triage their loans to identify which properties are at greatest risk. Servicers also contemplate how to work with borrowers to mitigate their risk.  

For investors seeking to purchase MSR portfolios, climate assessment is making its way into the due diligence process. This helps would-be investors ensure that they are not falling victim to adverse selection. As investors increasingly do this, climate assessment will eventually make its way further upstream, into appraisal and underwriting processes. 

Reliably modeling climate risk first requires getting a handle on how frequently natural hazard events are likely to occur and how severe they are likely to be. 

In a recent virtual industrial roundtable co-hosted by RiskSpan and Housing Finance Strategies, representatives of Freddie Mac, Mr. Cooper, and Verisk Analytics (a leading data and analytics firm that models a wide range of natural and man-made perils) gathered to discuss why understanding climate risk should be top of mind for mortgage investors and introduced a framework for approaching it. 

WATCH THE ENTIRE ROUNDTABLE

Building the Framework

The framework begins by identifying the specific hazards relevant to individual properties, building simulated catalogs of thousands of years worth of simulated events, computing likely events simulating damage based on property construction and calculating likely losses. These forecasted property losses are then factored into mortgage performance scenarios and used to model default risk, prepayment speeds and home price impacts. 

 

Responsibility to Borrowers

One member of the panel, Kurt Johnson, CRO of mega-servicer Mr. Cooper, spoke specifically of the operational complexities presented by climate risk. He cited as one example the need to speak daily with borrowers as catastrophic events are increasingly impacting borrowers in ways for which they were not adequately prepared. He also referred to the increasing number of borrowers incurring flood damage in areas that do not require flood insurance and spoke to how critical it is for servicers to know how many of their borrowers are in a similar position.

Johnson likened the concept of credit risk layering to climate risk exposure. The risk of one event happening on the heels of another event can cause the second event to be more devastating than it would have been had it occurred in a vacuum. As an example, he mentioned how the spike in delinquencies at the beginning of the covid pandemic was twice as large among borrowers who had just recovered from Hurricane Harvey 15 months earlier than it was among borrowers who had not been affected by the storm. He spoke of the responsibility he feels as a servicer to educate borrowers about what they can do to protect their properties in adverse scenarios.


An Emerging Climate Risk Consensus for Mortgages?

That climate change poses a growing—and largely unmeasured—risk to housing and mortgage investors is not news. As is often the case with looming threats whose timing and magnitude are only vaguely understood, increased natural hazard risks have most often been discussed anecdotally and in broad generalities. This, however, is beginning to change as the reality of these risks becomes increasingly clear to an increasing number of market participants and industry-sponsored research begins to emerge.

This past week’s special report by the Mortgage Bankers Association’s Research Institute for Housing America, The Impact of Climate Change on Housing and Housing Finance, raises a number of red flags about our industry’s general lack of preparedness and the need for the mortgage industry to take climate risk seriously as a part of a holistic risk management framework. Clearly this cannot happen until appropriate risk scenarios are generated and introduced into credit and prepayment models.

One of the puzzles we are focusing on here at RiskSpan is an approach to creating climate risk stress testing that can be easily incorporated into existing mortgage modeling frameworks—at the loan level—using home price projections and other stress model inputs already in use. We are also partnering with firms who have been developing climate stress scenarios for insurance companies and other related industries to help ensure that the climate risk scenarios we create are consistent with the best and most recently scientific research available.

Also on the short-term horizon is the implementation of FEMA’s new NFIP premiums for Risk Rating 2.0. Phase I of this new framework will begin applying to all new policies issued on or after October 1, 2021. (Phase II kicks in next April.) We wrote about this change back in February when these changes were slated to take effect back in the spring. Political pressure, which delayed the original implementation may also impact the October date, of course. We’ll be keeping a close eye on this and are preparing to help our clients estimate the likely impact of FEMA’s new framework on mortgages (and the properties securing them) in their portfolios.

Finally, this past week’s SEC statement detailing the commission’s expectations for climate-related 10-K disclosures is also garnering significant (and warranted) attention. By reiterating existing guidelines around disclosing material risks and applying them specifically to climate change, the SEC is issuing an unmistakable warning shot at filing companies who fail to take climate risk seriously in their disclosures.

Contact us (or just email me directly if you prefer) to talk about how we are incorporating climate risk scenarios into our in-house credit and prepayment models and how we can help incorporate this into your existing risk management framework.  



RiskSpan Named to Inaugural STORM50 Ranking by Chartis Research – Winner of “A.I. Innovation in Capital Markets”

Chartis Research has named RiskSpan to its Inaugural “STORM50” Ranking of leading risk and analytics providers. The STORM report “focuses on the computational infrastructure and algorithmic efficiency of the vast array of technology tools used across the financial services industry” and identifies industry-leading vendors that excel in the delivery of Statistical Techniques, Optimization frameworks, and Risk Models of all types. 

RiskSpan’s flagship Edge Platform was a natural fit for the designation because of its positioning squarely at the nexus of statistical behavioral modeling (specifically around mortgage credit and prepayment risk) and functionality enabling users to optimize trading and asset management strategies.  Being named the winner of the “A.I. Innovation in Capital Markets” solutions category reflects the work of RiskSpan’s vibrant innovation lab, which includes researching and developing machine learning solutions to structured finance challenges. These solutions include mining a growing trove of alternative/unstructured data sources, anomaly detection in loan-level and other datasets, and natural language processing for constructing deal cash flow models from legal documents.

Learn more about the Edge Platform or contact us to discuss ways we might help you modernize and improve your mortgage and structured finance data and analytics challenges. 


Climate Terms the Housing Market Needs to Understand

The impacts of climate change on housing and holders of mortgage risk are very real and growing. As the frequency and severity of perils increases, so does the associated cost – estimated to have grown from $100B in 2000 to $450B 2020 (see chart below). Many of these costs are not covered by property insurance, leaving homeowners and potential mortgage investors holding the bag. Even after adjusting for inflation and appreciation, the loss to both investors and consumers is staggering. 

Properly understanding this data might require adding some new terms to your personal lexicon. As the housing market begins to get its arms around the impact of climate change to housing, here are a few terms you will want to incorporate into your vocabulary.

  1. Natural Hazard

In partnership with climate modeling experts, RiskSpan has identified 21 different natural hazards that impact housing in the U.S. These include familiar hazards such as floods and earthquakes, along with lesser-known perils, such as drought, extreme temperatures, and other hydrological perils including mudslides and coastal erosion. The housing industry is beginning to work through how best to identify and quantify exposure and incorporate the impact of perils into risk management practices more broadly. Legacy thinking and risk management would classify these risks as covered by property insurance with little to no downstream risk to investors. However, as the frequency and severity increase, it is becoming more evident that risks are not completely covered by property & casualty insurance.

We will address some of these “hidden risks” of climate to housing in a forthcoming post.

  1. Wildland Urban Interface

The U.S. Fire Administration defines Wildland Urban Interface as “the zone of transition between unoccupied land and human development. It is the line, area, or zone where structures and other human development meet or intermingle with undeveloped wildland or vegetative fuels.” An estimated 46 million residences in 70,000 communities in the United States are at risk for WUI fires. Wildfires in California garner most of the press attention. But fire risk to WUIs is not just a west coast problem — Florida, North Carolina and Pennsylvania are among the top five states at risk. Communities adjacent to and surrounded by wildland are at varying degrees of risk from wildfires and it is important to assess these risks properly. Many of these exposed homes do not have sufficient insurance coverage to cover for losses due to wildfire.

  1. National Flood Insurance Program (NFIP) and Special Flood Hazard Area (SFHA)

The National Flood Insurance Program provides flood insurance to property owners and is managed by the Federal Emergency Management Agency (FEMA). Anyone living in a participating NFIP community may purchase flood insurance. But those in specifically designated high-risk SFPAs must obtain flood insurance to obtain a government-backed mortgage. SFHAs as currently defined, however, are widely believed to be outdated and not fully inclusive of areas that face significant flood risk. Changes are coming to the NFIP (see our recent blog post on the topic) but these may not be sufficient to cover future flood losses.

  1. Transition Risk

Transition risk refers to risks resulting from changing policies, practices or technologies that arise from a societal move to reduce its carbon footprint. While the physical risks from climate change have been discussed for many years, transition risks are a relatively new category. In the housing space, policy changes could increase the direct cost of homeownership (e.g., taxes, insurance, code compliance, etc.), increase energy and other utility costs, or cause localized employment shocks (i.e., the energy industry in Houston). Policy changes by the GSEs related to property insurance requirements could have big impacts on affected neighborhoods.

  1. Physical Risk

In housing, physical risks include the risk of loss to physical property or loss of land or land use. The risk of property loss can be the result of a discrete catastrophic event (hurricane) or of sustained negative climate trends in a given area, such as rising temperatures that could make certain areas uninhabitable or undesirable for human housing. Both pose risks to investors and homeowners with the latter posing systemic risk to home values across entire communities.

  1. Livability Risk

We define livability risk as the risk of declining home prices due to the desirability of a neighborhood. Although no standard definition of “livability” exists, it is generally understood to be the extent to which a community provides safe and affordable access to quality education, healthcare, and transportation options. In addition to these measures, homeowners also take temperature and weather into account when choosing where to live. Finding a direct correlation between livability and home prices is challenging; however, an increased frequency of extreme weather events clearly poses a risk to long-term livability and home prices.

Data and toolsets designed explicitly to measure and monitor climate related risk and its impact on the housing market are developing rapidly. RiskSpan is at the forefront of developing these tools and is working to help mortgage credit investors better understand their exposure and assess the value at risk within their businesses.

Contact us to learn more.



Why Mortgage Climate Risk is Not Just for Coastal Investors

When it comes to climate concerns for the housing market, sea level rise and its impacts on coastal communities often get top billing. But this article in yesterday’s New York Times highlights one example of far-reaching impacts in places you might not suspect.

Chicago, built on a swamp and virtually surrounded by Lake Michigan, can tie its whole existence as a city to its control and management of water. But as the Times article explains, management of that water is becoming increasingly difficult as various dynamics related to climate change are creating increasingly large and unpredictable fluctuations in the level of the lake (higher highs and lower lows). These dynamics are threatening the city with more frequency and severe flooding.

The Times article connects water management issues to housing issues in two ways: the increasing frequency of basement flooding caused by sewer overflow and the battering buildings are taking from increased storm surge off the lake. Residents face increasing costs to mitigate their exposure and fear the potentially negative impact on home prices. As one resident puts it, “If you report [basement flooding] to the city, and word gets out, people fear it’s going to devalue their home.”

These concerns — increasing peril exposure and decreasing valuations — echo fears expressed in a growing number of seaside communities and offer further evidence that mortgage investors cannot bank on escaping climate risk merely by avoiding the coasts. Portfolios everywhere are going to need to begin incorporating climate risk into their analytics.



Hurricane Season a Double-Whammy for Mortgage Prepayments

As hurricane (and wildfire) season ramps up, don’t sleep on the increase in prepayment speeds after a natural disaster event. The increase in delinquencies might get top billing, but prepays also increase after events—especially for homes that were fully insured against the risk they experienced. For a mortgage servicer with concentrated geographic exposure to the event area, this can be a double-whammy impacting their balance sheet—delinquencies increase servicing advances, prepays rolling loans off the book. Hurricane Katrina loan performance is a classic example of this dynamic.



The NRI: An Emerging Tool for Quantifying Climate Risk in Mortgage Credit

Climate change is affecting investment across virtually every sector in a growing number of mostly secondary ways. Its impact on mortgage credit investors, however, is beginning to be felt more directly.

Mortgage credit investors are investors in housing. Because housing is subject to climate risk and borrowers whose houses are destroyed by natural disasters are unlikely to continue paying their mortgages, credit investors have a vested interest in quantifying the risk of these disasters.

To this end, RiskSpan is engaged in leveraging the National Risk Index (NRI) to assess the natural disaster and climate risk exposure of mortgage portfolios.

This post introduces the NRI data in the context of mortgage portfolio analysis (loans or mortgage-backed securities), including what the data contain and key considerations when putting together an analysis. A future post will outline an approach for integrating this data into a framework for scenario analysis that combines this data with traditional mortgage credit models.

The National Risk Index

The National Risk Index (NRI) was released in October 2020 through a collaboration led by FEMA. It provides a wealth of new geographically specific data on natural hazard risks across the country. The index and its underlying data were designed to help local governments and emergency planners to better understand these risks and to plan and prepare for the future.

The NRI provides information on both the frequency and severity of natural risk events. The level of detailed underlying data it provides is astounding. The NRI focuses on 18 natural risks (discussed below) and provides detailed underlying components for each. The severity of an event is broken out by damage to buildings, agriculture, and loss of life. This breakdown lets us focus on the severity of events relative to buildings. While the definition of building here includes all types of real estate—houses, commercial, rental, etc.—having the breakdown provides an extra level of granularity to help inform our analysis of mortgages.

The key fields that provide important information for a mortgage portfolio analysis are bulleted below. The NRI provides these data points for each of the 18 natural hazards and each geography they include in their analysis.

  • Annualized Event Frequency
  • Exposure to Buildings: Total dollar amount of exposed buildings
  • Historical Loss Ratio for Buildings (Bayesian methods to derive this estimate, such that every geography is covered for its relevant risks)
  • Expected Annual Loss for Buildings
  • Population estimates (helpful for geography weighting)

Grouping Natural Disaster Risks for Mortgage Analysis

The NRI data covers 18 natural hazards, which pose varying degrees of risk to housing. We have found the framework below to be helpful when considering which risks to include in an analysis. We group the 18 risks along two axes:

1) The extent to which an event is impacted by climate change, and

2) An event’s potential to completely destroy a home.

Earthquakes, for example, have significant destructive potential, but climate change is not a major contributor to earthquakes. Conversely, heat waves and droughts wrought by climate change generally do not pose significant risk to housing structures.

When assessing climate risk, RiskSpan typically focuses on the five natural hazard risks in the top right quadrant below.

Immediate Event Risk versus Cumulative Event Risk

Two related but distinct risks inform climate risk analysis.

  1. Immediate Event Analysis: The risk of mortgage delinquency and default resulting directly from a natural disaster eventhome severely damaged or destroyed by a hurricane, for example.  
  2. Cumulative Event Risk: Less direct than immediate event risk, this is the risk of widespread home price declines across an entire area communities because of increasing natural hazard risk brought on by climate changeThese secondary effects include: 
    • Heightened homebuyer awareness or perception of increasing natural hazard risk,
    • Property insurance premium increases or areas becoming ‘self-insured, 
    • Government policy impacts (e.g., potential flood zone remapping), and 
    • Potential policy changes related to insurance from key players in the mortgage market (i.e., Fannie Mae, Freddie Mac, FHFA, etc.). 

NRI data provides an indication of the probability of immediate event occurrence and its historic severity in terms of property losses. We can also empirically observe historical mortgage performance in the wake of previous natural disaster events. Data covering several hurricane and wildfire events are available.

Cumulative event risk is less observable. A few academic papers attempt to tease out these impacts, but the risk of broader home price declines typically needs to be incorporated into a risk assessment framework through transparent scenario overlays. Examples of such scenarios include home price declines of as much as 20% in newly flood-exposed areas of South Florida. There is also research suggesting that there are often long term impacts to consumer credit following a natural disaster 

Geography Normalization

Linking to the NRI is simple when detailed loan pool geographic data are available. Analysts can merge by census tract or county code. Census tract is the more geographically granular measure and provides a more detailed analysis.

For many capital markets participants, however, that level of geographic specific detail is not available. At best, an investor may have a 5-digit or 3-digit zip code. Zip codes do not directly match to a given county or census tract and can potentially span across those distinctions.

There is no perfect way to perform the data link when zip code is the only available geographic marker. We take an approach that leverages the other data on housing stock by census tract to weight mortgage portfolio data when multiple census tracts map to a zip code.

Other Data Limitations

The loss information available represents a simple historical average loss rate given an event. But hurricanes (and hurricane seasons) are not all created equal. The same is true of other natural disasters. Relying on averages may work over long time horizons but could significantly underpredict or overpredict loss in a particular year. Further, the frequency of events is rising so that what used to be considered 100 year event may be closer to a 10 or 20 year event. Lacking data about what losses might look like under extreme scenarios makes modeling such events problematic.

The data also make it difficult to take correlation into account. Hurricanes and coastal flooding are independent events in the dataset but are obviously highly correlated with one another. The impact of a large storm on one geographic area is likely to be correlated with that of nearby areas (such as when a hurricane makes its way up the Eastern Seaboard).

The workarounds for these limitations have limitations of their own. But one solution involves designing transparent assumptions and scenarios related to the probability, severity, and correlation of stress events. We can model outlier events by assuming that losses for a particular peril follow a normal distribution with set standard deviations. Other assumptions can be made about correlations between perils and geographies. Using these assumptions, stress scenarios can be derived by picking a particular percentile along the loss distribution.

A Promising New Credit Analysis Tool for Mortgages

Notwithstanding its limitations, the new NRI data is a rich source of information that can be leveraged to help augment credit risk analysis of mortgage and mortgage-backed security portfolios. The data holds great promise as a starting point (and perhaps more) for risk teams starting to put together climate risk and other ESG analysis frameworks.


Nearly $8 Trillion in Senior Home Equity Pushes Reverse Mortgage Market Index Upward

The NRMLA/RiskSpan Reverse Mortgage Market Index (RMMI) rose to 280.99 during the third quarter of 2020, an all-time high. This reflects a 1.6% increase in senior home equity, which now stands at an estimated $7.82 trillion. Growth in senior homeowner’s wealth was largely attributable to an estimated 1.6% (or $149 billion) increase in senior housing value, offset by 1.6% (or $28 billion) increase of senior-held mortgage debt.

The National Reverse Mortgage Lenders Association (NRMLA) and RiskSpan have published the Reverse Mortgage Market Index (RMMI) since the beginning of 2000. The RMMI provides a trending measure of home equity among U.S. homeowners age 62 and older.

The RMMI defines senior home equity as the difference between the aggregate value of homes owned and occupied by seniors and the aggregate mortgage balance secured by those homes. This measure enables NRMLA to help gauge the potential market size of those who may be qualified for a reverse mortgage product. The chart above illustrates the steady increase in this index since the end of the 2008 recession.

Increasing house prices drive the index’s upward trend, mitigated to some extent by a corresponding modest increase in mortgage debt held by seniors. The most recent RMMI report (reflecting data as of the end of Q3 20202) was published last week on NRMLA’s website.

Note on the Limitations of RMMI

To calculate the RMMI, an econometric tool is developed to estimate senior housing value, senior mortgage level, and senior equity using data gathered from various public resources such as American Community Survey (ACS), Federal Reserve Flow of Funds (Z.1), and FHFA housing price indexes (HPI). The RMMI is simply the senior equity level at time of measure relative to that of the base quarter in 2000.[1]  The main limitation of RMMI is non-consecutive data, such as census population. We use a smoothing approach to estimate data in between the observable periods and continue to look for ways to improve our methodology and find more robust data to improve the precision of the results. Until then, the RMMI and its relative metrics (values, mortgages, home equities) are best analyzed at a trending macro level, rather than at more granular levels, such as MSA.


[1] There was a change in RMMI methodology in Q3 2015 mainly to calibrate senior homeowner population and senior housing values observed in 2013 American Community Survey (ACS).


Get Started
Get A Demo

Linkedin    Twitter    Facebook