Learn more about how one mortgage investor successfully overhauled their analytics computational processing with RiskSpan. The investor migrated from a daily pricing and risk process that relied on tens of thousands of rep lines to one capable of evaluating each of the portfolio’s more than three-and-a-half million loans individually (and how they actually saved money in the process). 

The Situation 

A RiskSpan client was managing a large investment portfolio of mortgage servicing rights (MSR) assets, residential loans and securities. The investor runs a battery of sophisticated risk management analytics that rely on stochastic modeling. Option-adjusted spread, duration, convexity, and key rate durations are calculated based on more than 200 interest rate simulations.

They used rep lines for one main reason: they needed a way to manage computational loads on the server and improve calculation speeds. Secondarily, organizing the loans in this way simplified their reporting and accounting requirements to a degree (loans financed by the same facility were grouped into the same rep line).  

This approach had some significant downsides. Pooling loans by finance facility was sometimes causing loans with different balances, LTVs, credit scores, etc., to get grouped into the same rep line. This resulted in prepayment and default assumptions getting applied to every loan in a rep line that differed from the assumptions that likely would have been applied if the loans were being evaluated individually. 

The Challenge 

The main challenge was the investor’s MSR portfolio—specifically, the volume of loans trying to be run. The client has close to 4 million loans spread across nine different servicers. This presented two related but separate sets of challenges. 

The first set of challenges stemmed from needing to consume data from different servicers whose file formats not only differed from one another but also often lacked internal consistency. Even the file formats from a single given servicer tended to change from time to time. This required RiskSpan to continuously update its data mappings and (because the servicer reporting data is not always clean) modify QC rules to keep up with evolving file formats.  

The second challenge related to the sheer volume of compute power necessary to run stochastic paths of Monte Carlo rate simulations on 4 million individual loans and then discount the resulting cash flows based on option adjusted yield across multiple scenarios. 

And so there were 4 million loans times multiple paths times one basic cash flow, one basic option-adjusted case, one up case, and one down case—it’s evident how quickly the workload adds up. And all this needed to happen on a daily basis. 

To help minimize the computing workload, this client had been running all these daily analytics at a rep-line level—stratifying and condensing everything down to between 70,000 and 75,000 rep lines. This alleviated the computing burden but at the cost of decreased accuracy because they could not look at the loans individually.

The Solution 

The analytics computational processing RiskSpan implemented ignores the rep line concept entirely and just runs the loans. The scalability of our cloud-native infrastructure enables us to take the three-and-a-half million loans and bucket them equally for computation purposes. We run a hundred loans on each processor and get back loan-level cash flows and then generate the output separately, which brings the processing time down considerably. 

For each individual servicer, RiskSpan leveraged its Smart Mapper technology and Configurable QC feature in its Edge Platform to create a set of optimized loan files that can be read and rendered “analytics-ready” very quickly. This enables the loan-level data to be quickly consumed and immediately used for analytics without having to read all the loan tapes and convert them into a format that an analytics engine can understand. Because RiskSpan has “pre-processed” all this loan information, it is immediately available in a format that the engine can easily digest and run analytics on. 

An investor in any mortgage asset benefits from the ability to look at and evaluate loan characteristics individually. The results may need to be rolled up and grouped for reporting purposes. But being able to run the cash flows at the loan level ultimately makes the aggregated results vastly more meaningful and reliable. A loan-level framework also affords whole-loan and securities investors the ability to be sure they are capturing the most important loan characteristics and are staying on top of how the composition of the portfolio evolves with each day’s payoffs.