Linkedin    Twitter   Facebook

Get Started
Get a Demo
Articles Tagged with: General

It’s time to move to DaaS — Why it matters for REITs, loan and MSR investors

Data as a service, or DaaS, for REITs, loans and MSR investors is fast becoming the difference between profitable trades and near misses.

Granularity of data is creating differentiation among investors. To win at investing in loans and mortgage servicing rights requires effectively managing a veritable ocean of loan-level data. Buried within every detailed tape of borrower, property, loan and performance characteristics lies the key to identifying hidden exposures and camouflaged investment opportunities. Understanding these exposures and opportunities is essential to proper bidding during the acquisition process and effective risk management once the portfolio is onboarded.

Investors know this. But knowing that loan data conceals important answers is not enough. Even knowing which specific fields and relationships are most important is not enough. Investors also must be able to get at that data. And because mortgage data is inherently messy, investors often run into trouble extracting the answers they need from it.

For investors, it boils down to two options. They can compel analysts to spend 75 percent of their time wrangling unwieldy data – plugging holes, fixing outliers, making sure everything is mapped right. Or they can just let somebody else worry about all that so they can focus on more analytical matters.

RiskSpan’s DaaS is the “just let somebody else worry about all that” solution.

Don’t get left behind — DaaS for REITs, loan and MSR investors

It should go without saying that the “let somebody else worry about all that” approach only works if “somebody else” possesses the requisite expertise with mortgage data. Self-proclaimed data experts abound. But handing the process over to an outside data team lacking the right domain experience risks creating more problems than it solves.

Ideally, DaaS for loan and MSR investors consists of a data owner handing off these responsibilities to a third party that can deliver value in ways that go beyond simply maintaining, aggregating, storing and quality controlling loan data. All these functions are critically important. But a truly comprehensive DaaS provider is one whose data expertise is complemented by an ability to help loan and MSR investors understand whether portfolios are well conceived. A comprehensive DaaS provider helps investors ensure that they are not taking on hidden risks (for which they are not being adequately compensated in pricing or servicing fee structure).

True DaaS frees up loan and MSR investors to spend more time on higher-level tasks consistent with their expertise. The more “blocking and tackling” aspects of data management that every institution that owns these assets needs to deal with can be handled in a more scalable and organized way. Cloud-native DaaS platforms like RiskSpan’s are what make this scalability possible.

Scalability — stop reinventing the wheel with each new servicer

One of the most challenging aspects of managing a portfolio of loans or MSRs is the need to manage different types of investor reporting data pipelines from different servicers. What if, instead of having to “reinvent the wheel” to figure out data intake every time a new servicer comes on board, “somebody else” could take care of that for you?

An effective DaaS provider is one not only that is well versed in building and maintain loan data pipes from servicers to investors but also has already established a library of existing servicer linkages. An ideal provider is one already set-up to onboard servicer data directly onto its own DaaS platform. Investors achieve enormous economies of scale by having to integrate with a single platform as opposed to a dozen or more individual servicer integrations. Ultimately, as more investors adopt DaaS, the number of centralized servicer integrations will increase, and greater economies will be realized across the industry.

Connectivity is only half the benefit. The DaaS provider not only intakes, translates, maps, and hosts the loan-level static and dynamic data coming over from servicers. The DaaS provider also takes care of QC, cleaning, and managing it. DaaS providers see more loan data than any one investor or servicer. Consequently, the AI tools an experienced DaaS provider uses to map and clean incoming loan data have had more opportunities to learn. Loan data that has been run through a DaaS provider’s algorithms will almost always be more analytically valuable than the same loan data processed by the investor alone.  

Investors seeking to increase their footprint in the loan and MSR space obviously do not wish to see their data management costs rise in proportion to the size of their portfolios. Outsourcing to a DaaS provider that specializes in mortgages, like RiskSpan, helps investors build their book while keeping data costs contained.

Save time and money – Make better bids

For all these reasons, DaaS is unquestionably the future (and, increasingly, the present) of loan and MSR data management. Investors are finding that a decision to delay DaaS migration comes with very real costs, particularly as data science labor becomes increasingly (and often prohibitively) expensive.

The sooner an investor opts to outsource these functions to a DaaS provider like RiskSpan, the sooner that investor will begin to reap the benefits of an optimally cost-effective portfolio structure. One RiskSpan DaaS client reported a 50 percent reduction in data management costs alone.

Investors continuing to make do with in-house data management solutions will quickly find themselves at a distinct bidding disadvantage. DaaS-aided bidders have the advantage of being able to bid more competitively based on their more profitable cost structure. Not only that, but they are able to confidently hone and refine their bids based on having a better, cleaner view of the portfolio itself.

Rethink your mortgage data. Contact RiskSpan to talk about how DaaS can simultaneously boost your profitability and make your life easier.

REQUEST A DEMO

RiskSpan Introduces Media Effect Measure for Prepayment Analysis, Predictive Analytics for Managed Data 

ARLINGTON, Va., July 14, 2022

RiskSpan, a leading provider of residential mortgage  and structured product data and analytics, has announced a series of new enhancements in the latest release of its award-winning Edge Platform.

Comprehensive details of these new capabilities are available byrequesting a no-obligation demo at riskspan.com.

Speak to An Expert

Media Effect – It has long been accepted that prepayment speeds see an extra boost as media coverage alerts borrowers to refinancing opportunities. Now, Edge lets traders and modelers measure the media effect present in any active pool of Agency loans—highlighting borrowers most prone to refinance in response to news coverage—and plot the empirical impact on any cohort of loans. Developed in collaboration with practitioners, it measures rate novelty by comparing rate environment at a given time to rates over the trailing five years. Mortgage portfolio managers and traders who subscribe to Edge have always been able to easily stratify mortgage portfolios by refinance incentive. With the new Media Effect filter/bucket, market participants fine tune expectations by analyzing cohorts with like media effects.

Predictive Analytics for Managed Data – Edge subscribers who leverage RiskSpan’s Data Management service to aggregate and prep monthly loan and MSR data can now kick off predictive analytics for any filtered snapshot of that data. Leveraging RiskSpan’s universe of forward-looking analytics, subscribers can generate valuations, market risk metrics to inform hedging, credit loss accounting estimates and credit stress test outputs, and more. Sharing portfolio snapshots and analytics results across teams has never been easier.

These capabilities and other recently released Edge Platform functionality will be on display at next week’s SFVegas 2022 conference, where RiskSpan is a sponsor. RiskSpan will be featured at Booth 38 in the main exhibition hall. RiskSpan professionals will also be available to respond to questions on July 19th following their panels, “Market Beat: Mortgage Servicing Rights” and “Technology Trends in Securitization.”


About RiskSpan, Inc. 

RiskSpan offers cloud-native SaaS analytics for on-demand market risk, credit risk, pricing and trading. With our data science experts and technologists, we are the leader in data as a service and end-to-end solutions for loan-level data management and analytics.

Our mission is to be the most trusted and comprehensive source of data and analytics for loans and structured finance investments.

Rethink loan and structured finance data. Rethink your analytics. Learn more at www.riskspan.com.


Automated Legal Disclosure Generator for Mortgage and Asset-Backed Securities

Issuing a security requires a lot of paperwork. Much of this paperwork consists of legal disclosures. These disclosures inform potential investors about the collateral backing the bonds they are buying. Generating, reviewing, and approving these detailed disclosures is hard and takes a lot of time – hours and sometimes days. RiskSpan has developed an easy-to-use legal disclosure generator application that makes it easier, reducing the process to minutes.

RiskSpan’s Automated Legal Disclosure Generator for Mortgage and Asset-Backed Securities automates the generation of prospectus-supplements, pooling and servicing agreements, and other legal disclosure documents. These documents contain a combination of static and dynamic legal language, data, tables, and images.  

The Disclosure Generator draws from a collection of data files. These files contain collateral-, bond-, and deal-specific information. The Disclosure Generator dynamically converts the contents of these files into legal disclosure language based on predefined rules and templates. In addition to generating interim and final versions of the legal disclosure documents, the application provides a quick and easy way of making and tracking manual edits to the documents. In short, the Disclosure Generator is an all-inclusive, seamless, end-to-end system for creating, editing and tracking changes to legal documents for mortgage and asset-backed securities.   

The Legal Disclosure Generator’s user interface supports:  

  1. Simultaneous uploading of multiple data files.
  2. Instantaneous production of the first (and subsequent) drafts of legal documents, adhering to the associated template(s).
  3. A user-friendly editor allowing manual, user-level language and data changes. Users apply these edits either directly to a specific document or to the underlying data template itself. Template updates carry forward to the language of all subsequently generated disclosures. 
  4. A version control feature that tracks and retains changes from one document version to the next.
  5. An archiving feature allowing access to previously generated documents without the need for the original data files.
  6. Editing access controls based on pre-defined user level privileges.
CONTACT US

Overview

RiskSpan’s Automated Legal Disclosure Generator for Mortgage and Asset-Backed Securities enables issuers of securitized assets to create legal disclosures efficiently and quickly from raw data files.

The Legal Disclosure Generator is easy and intuitive to use. After setting up a deal in the system, the user selects the underlying collateral- and bond-level data files to create the disclosure document. In addition to the raw data related to the collateral and bonds, these data files also contain relevant waterfall payment rules. The data files can be in any format — Excel, CSV, text, or even custom file extensions. Once the files are uploaded, the first draft of the disclosures can be easily generated in just a few seconds. The system takes the underlying data files and creates a draft of the disclosure document seamlessly and on the fly.  In addition, the Legal Disclosure Generator reads custom scripts related to waterfall models and converts them into waterfall payment rules.

Here is a sample of a disclosure document created from the system.


REQUEST A DEMO

Blackline Version(s)

In addition to creating draft disclosure documents, the Legal Disclosure Generator enables users to make edits and changes to the disclosures on the fly through an embedded editor. The Disclosure Generator saves these edits and applies them to the next version. The tool creates blackline versions with a single integrated view for managing multiple drafts.

The following screenshot of a sample blackline version illustrates how users can view changes from one version to the next.

Tracking of Drafts

The Legal Disclosure Generator keeps track of a disclosure’s entire version history. The system enables email of draft versions directly to the working parties, and additionally retains timestamps of these emails for future reference.

The screenshot below shows the entire lifecycle of a document, from original creation to print, with all interim drafts along the way. 


Automated QC System

The Legal Disclosure Generator’s automated QC system creates a report that compares the underlying data file(s) to the data that is contained in the legal disclosure. The automated QC process ensures that data is accurate and reconciled.

Downstream Consumption

The Legal Disclosure Generator creates a JSON data file. This consolidated file consists of collateral and bond data, including waterfall payment rules. The data files are made available for downstream consumption and can also be sent to Intex, Bloomberg, and other data vendors. One such vendor noted that this JSON data file has enabled them to model deals in one-third the time it took previously.

Self-Serve System

The Legal Disclosure Generator was designed with the end-user in mind. Users can set up the disclosure language by themselves and edit as needed, with little or no outside help.

The ‘System’ Advantage

  • Remove unnecessary, manual, and redundant processes
  • Huge Time Efficiency – 24 Hours vs 2 Mins (Actual time savings for a current client of the system)
  • Better Managed Processes and Systems
  • Better Resource Management – Cost Effective Solutions
  • Greater Flexibility
  • Better Data Management – Inbuilt QCs


LEARN MORE

Why Accurate MSR Cost Forecasting Requires Loan-by-Loan Analytics

When it comes to forecasting MSR cash flows, the practice of creating “rep lines,” or cohorts, of loans with similar characteristics for analytical purposes has its roots in the Agency MBS market. One of the most attractive and efficient features of Agencies is the TBA market. This market allows originators and issuers to sell large pools of mortgages that have not even been originated yet. This is possible because all parties understand what these future loans will look like. All these loans will all have enough in common as to be effectively interchangeable with one another.  

Institutions that perform the servicing on such loans may reasonably feel they can extend the TBA logic to their own analytics. Instead of analyzing a hundred similar loans individually, why not just lump them into one giant meta-loan? Sum the balances, weight-average the rates, terms, and other features, and you’re good to go. 

Why the industry still resorts to loan cohorting when forecasting MSR cash flows

The simplest explanation for cohort-level analytics lies in its simplicity. Rep lines amount to giant simplifying assumptions. They generate fewer technological constraints than a loan-by-loan approach does. Condensing an entire loan portfolio down to a manageable number of rows requires less computational capacity. This takes on added importance when dealing with on-premise software and servers. It also facilitates the process of assigning performance and cost assumptions. 

What is more, as OAS modeling has evolved to dominate the loans and MSR landscape, the stratification approach necessary to run Monte Carlo and other simulations lends itself to cohorting. Lumping loans into like groups also greatly simplifies the process of computing hedging requirements. 

Advantages of loan-level over cohorting when forecasting MSR cash flows

Treating loan and MSR portfolios like TBA pools, however, has become increasingly problematic as these portfolios have grown more heterogeneous. Every individual loan has a story. Even loans that resemble each other in terms of rate, credit score, LTV, DTI, and documentation level have unique characteristics. Some of these characteristics – climate risk, for example – are not easy to bucket. Lumping similar loans into cohorts also runs the risk of underestimating tail risk. Extraordinarily high servicing/claims costs on just one or two outlier loans on a bid tape can be enough to adversely affect the yield of an entire deal. 

Conversely, looking at each loan individually facilitates the analysis of portfolios with expanded credit boxes. Non-banks, which do not usually have the benefit of “knowing” their servicing customers through depository or other transactional relationships, are particularly reliant on loan-level data to understand individual borrower risks, particularly credit risks. Knowing the rate, LTV, and credit score of a bundled group of loans may be sufficient for estimating prepayment risk. But only a more granular, loan-level analysis can produce the credit analytics necessary to forecast reliably and granularly what a servicing portfolio is really going to cost in terms of collections, loss mitigation, and claims expenses.  

Loan-level analysis also eliminates the reliance on stratification limitations. It facilitates portfolio composition analysis. Slicing and dicing techniques are much more simply applied to loans individually than to cohorts. Looking at individual loans also reduces the risk of overrides and lost visibility into convexity pockets. 

RiskSpan’s cloud-native Edge Platform projects prepayment, default, severity and MSR cash flows (income and costs) at the loan level

Loan-Level MSR Analytics

REQUEST A DEMO

Potential challenges and other considerations 

So why hasn’t everyone jumped onto the loan-level bandwagon when forecasting MSR cash flows? In short, it’s harder. Resistance to any new process can be expected when existing aggregation regimes appear to be working fine. Loan-level data management requires more diligence in automated processes. It also requires the data related to each individual loan to be subjected to QC and monitoring. Daily hedging and scenario runs tend to focus more on speed than on accuracy at the macro level. Some may question whether the benefits of such a granular, case-by-case analysis that identifying the most significant loan-level pickups requires actually justifies the cost of such a regime. 

Rethink. Why now? 

Notwithstanding these challenges, there has never been a better time for loan and MSR investors to abandon cohorting and fully embrace loan-level analytics when forecasting MSR cash flows. The emergence of cloud-native technology and enhanced database and warehouse infrastructure along with the ability to outsource the hosting and computational requirements out to third parties creates practically limitless scalability. 

The barriers between MSR experts and IT professionals have never been lower. This, combined with the emergence of a big data culture in an increasing number of organizations, has brought the granular daily analysis promised by loan-level analytics tantalizingly within reach.  


RiskSpan Introduces Proprietary Measure for Plotting Burnout Effect on Prepays, Adds RPL/NPL Forecasting

ARLINGTON, Va., June 22, 2022 —

RiskSpan, a leading provider of residential mortgage and structured product data and analytics, has announced a series of new enhancements in the latest release of its award-winning Edge Platform.  

Comprehensive details of these new capabilities are available by requesting a no-obligation demo at riskspan.com.

  • Burnout Metrics MBS traders and investors can now look up a proprietary, cumulative burnout metric that quantifies the extent to which a defined pool of mortgages has continued to pay coupons above refinance rates over time. The metric goes beyond simple comparisons of note rates to historic prevailing rates by also tracking the number of times borrowers have ignored the “media effect” of repeatedly seeing rates reach record lows. Edge users can plot empirical prepay speeds as a function of burnout to help project performance of pools with various degrees of burnout. A virtual walk-through of this functionality is available here.
  • Reperforming Loans Investors in nonperforming and reperforming loans – particularly RPLs that have recently emerged from covid forbearance – can now project performance and cash flows of loans with deferred balances. Edge reads in the total debt owed (TDO) recovery method and has added key output fields like prepaid principal percent reduction and total debt owed to its cash flow report.
  • Hedge Ratios – The Edge Platform now enables traders and portfolio managers to easily compute, in one single step, the quantity of 2yr, 5yr, 10yr, or 30yr treasuries (or any combination of these or other hedges) that must be sold to offset the effective duration of assets in a given portfolio. Swaps, swaptions and other hedges are also supported. Clearly efficient and useful for any portfolio of interest-rate-sensitive assets, the functionality is proving particularly valuable to commercial banks with MSR holdings and others who require daily transparency to hedging ratios.  

### 

About RiskSpan, Inc. 

RiskSpan offers end-to-end solutions for data management, historical performance, predictive analytics and portfolio risk management on a secure, fast, and scalable platform that has earned the trust of the industry’s largest firms. Combining the strength of subject matter experts, quantitative analysts, and technologists, RiskSpan’s Edge platform integrates a range of datasets – structured and unstructured – and off-the-shelf analytical tools to provide you with powerful insights and a competitive advantage. Learn more at www.riskspan.com.  

SPEAK to An EXPERT

RiskSpan Announces Cloud-Native Mortgage Servicing Rights Application

ARLINGTON, Va., Mortgage fintech leader RiskSpan announced today that it has added a Mortgage Servicing Rights (MSR) application to its award-winning on-demand analytics Edge Platform.

The application expands RiskSpan’s unparalleled loan-level mortgage analytics to MSRs, an asset class whose cash flows have previously been challenging to forecast at the loan level. Unlike conventional MSR tools that assume large numbers of loans bucketed into “rep lines” will perform identically, the Edge Platform’s granular approach makes it possible to forecast MSR portfolio net cash flows and run valuation and scenario analyses with unprecedented precision.   

RiskSpan’s MSR platform integrates RiskSpan’s proprietary prepayment and credit models to calculate option-adjusted risk metrics while also incorporating the full range of client-configurable input parameters (costs and recapture assumptions, for example) necessary to fully characterize the cash flows arising from servicing. Further, its integrated data warehouse solution enables easy access to time-series loan and collateral performance. 

“Our cloud-native platform has enabled us to achieve something that has long eluded our industry – on-demand, loan-level cash flow forecasting,” observed RiskSpan CEO Bernadette Kogler. “This has been an absolute game changer for our clients.”

Loan-level projections enable MSR investors to re-combine and re-aggregate loan-level cash flow results on the fly, opening the door to a host of additional, scenario-based analytics – including climate risk and responsible ESG analysis. The flexibility afforded by RiskSpan’s parallel computing framework allows for complex net cash flow calculations on hundreds of thousands of individual mortgage loans simultaneously. The speed and scalability this affords makes the Edge Platform ideally suited for pricing even the largest portfolios of MSR assets and making timely trading decisions with confidence.

About RiskSpan 
RiskSpan offers end-to-end solutions for data management, trading risk management analytics, and visualization on a highly secure, fast, and fully scalable platform that has earned the trust of the industry’s largest firms. Combining the strength of subject matter experts, quantitative analysts, and technologists, RiskSpan’s Edge platform integrates a range of data-sets – structured and unstructured – and off-the-shelf analytical tools to provide you with powerful insights and a competitive advantage. Learn more at www.riskspan.com. 

GET STARTED WITH A RISKSPAN EXPERT TODAY!

Surge in Cash-Out Refis Pushes VQI Sharply Higher

A sharp uptick in cash-out refinancing pushed RiskSpan’s Vintage Quality Index (VQI) to its highest level since the first quarter of 2019.

RiskSpan’s Vintage Quality Index computes and aggregates the percentage of Agency originations each month with one or more “risk factors” (low-FICO, high DTI, high LTV, cash-out refi, investment properties, etc.). Months with relatively few originations characterized by these risk factors are associated with lower VQI ratings. As the historical chart above shows, the index maxed out (i.e., had an unusually high number of loans with risk factors) leading up to the 2008 crisis.

RiskSpan uses the index principally to fine-tune its in-house credit and prepayment models by accounting for shifts in loan composition by monthly cohort.

Rising Rates Mean More Cash-Out Refis (and more risk)

As the following charts plotting the individual VQI components illustrate, a spike in cash-out refinance activity (as a percentage of all originations) accounted for more of the rise in overall VQI than did any other risk factor.

This comes as little surprise given the rising rate environment that has come to define the first quarter of 2022, a trend that is likely to persist for the foreseeable future.

As we demonstrated in this recent post, the quickly vanishing number of borrowers who are in the money for a rate-and-term refinance means that the action will increasingly turn to so-called “serial cash-out refinancers” who repeatedly tap into their home equity even when doing so means refinancing into a mortgage with a higher rate. The VQI can be expected to push ever higher to the extent this trend continues.

An increase in the percentage of loans with high debt-to-income ratios (over 45) and low credit scores (under 660) also contributed to the rising VQI, as did continued upticks in loans on investment and multi-unit properties as well as mortgages with only one borrower.

Population assumptions:

  • Monthly data for Fannie Mae and Freddie Mac.
  • Loans originated more than three months prior to issuance are excluded because the index is meant to reflect current market conditions.
  • Loans likely to have been originated through the HARP program, as identified by LTV, MI coverage percentage, and loan purpose, are also excluded. These loans do not represent credit availability in the market as they likely would not have been originated today but for the existence of HARP.

Data assumptions:

  • Freddie Mac data goes back to 12/2005. Fannie Mae only back to 12/2014.
  • Certain fields for Freddie Mac data were missing prior to 6/2008.

GSE historical loan performance data release in support of GSE Risk Transfer activities was used to help back-fill data where it was missing.

An outline of our approach to data imputation can be found in our VQI Blog Post from October 28, 2015.

Data Source: Fannie Mae PoolTalk®-Loan Level Disclosure


EDGE: Cash-Out Refi Speeds 

Mortgage rates have risen nearly 200bp from the final quarter of 2021, squelching the most recent refinancing wave and leaving the majority of mortgage holders with rates below the prevailing rate of roughly 5% (see chart below). For most homeowners, it no longer makes sense to refinance an existing 30yr mortgage into another 30yr mortgage.

GET STARTED

But, as we noted back in February, the rapid rise in home prices has left nearly all households with significant, untapped gains in their household balance sheets. For homeowners with consumer debt at significantly higher rates than today’s mortgage rates, it can make economic sense to consolidate debt using a cash-out refi loan against their primary residence. As we saw during 2002-2003, cash-out refinancing can drive speeds on discount mortgages significantly higher than turnover alone. Homeowners can also become “serial cash-out refinancers,” tapping additional equity multiple times.  

In this analysis, we review prepayment speeds on cash-out refis, focusing on discount MBS, i.e., mortgages whose note rates are equal to or below today’s prevailing rates. 

The volume of cash-out refis has grown steadily but modestly since the start of the pandemic, whereas rate/term refis surged and fell dramatically in response to changing interest rates. Despite rising rates, the substantial run-up in home prices and increased staffing at originators from the recent refi boom has left the market ripe for stronger cash-out activity. 

The pivot to cash-out issuance is evidenced by the chart below, illustrating how the issuance of cash-out refi loans (the black line below) in the first quarter of this year was comparable with issuance in the summer of 2021, when rates near historic lows, while rate/term refis (blue line) have plunged over the same period. 

With cash-out activity set to account for a larger share of the mortgage market, we thought it worthwhile to compare some recent cash-out activity trends. For this analysis, the graphs consist of truncated S-curves, showing only the left-hand (out-of-the-money) side of the curve to focus on discount mortgage behavior in a rising rate environment where activity is more likely to be influenced by serial cash-out activity. 

This first chart compares recent performance of out-of-the money mortgages by loan purpose, comparing speeds for purchase loans (black) with both cash-out refis (blue) and rate/term refis (green). Notably, cash-out refis offer 1-2 CPR upside over rate/term refis, only converging to no cash out refis when 100bp out of the money.[1] 

Next, we compare cash-out speeds by servicer type, grouping mortgages that are serviced by banks (blue) versus mortgages serviced by non-bank servicers (green). Non-bank servicers produce significantly faster prepay speeds, an advantage over bank-serviced loans for MBS priced at a discount. 

Finally, we drill deeper into the faster non-bank-serviced discount speeds for cash-out refis. This chart isolates Quicken (red) from other non-bank servicers (green). While Quicken’s speeds converge with those of other non-banks at the money, Quicken-serviced cash-out refis are substantially faster when out of the money than both their non-bank counterparts and the cash-out universe as a whole.[2]

SCHEDULE A DEMO

We suspect the faster out-of-the-money speeds are being driven by serial cash-out behavior, with one servicer in particular (Quicken) encouraging current mortgage holders to tap home equity as housing prices continue to rise. 

This analysis illustrates how pools with the highest concentration of Quicken-serviced cash-out loans may produce substantially higher out-of-the-money speeds relative to the universe of non-spec pools. To find such pools, users can enter a list of pools into the Edge platform and simultaneously filter for both Quicken and cash-out refi. The resultant query will show each pool’s UPB for this combination of characteristics. 

Contact US to run this or any query


EDGE: Recent Performance of GNMA RG Pools

In early 2021, GNMA began issuing a new class of custom pools with prefix “RG.” These pools are re-securitizations of previously delinquent loans which were repurchased from pools during the pandemic.[1] Loans in these pools are unmodified, keeping the original rate and term of the mortgage note. In the analysis below, we review the recent performance of these pools at loan-level detail. The first RG pools were issued in February 2021, growing steadily to an average rate of $2B per month from Q2 onward, with a total outstanding of $21 billion. 

 
LEARN MORE ABOUT RISKSPAN'S EDGE PLATFORM

The majority of RG issuance has included loans that are two to seven years seasoned and represent a consistent 2-3% of the total GNMA market for those vintages, dashed line below.

Coupons of RG pools are primarily concentrated between 3.0s through 4.5s, with the top-10 Issuers of RG pools account for nearly 90% of the issuance.

Below, we compare speeds on GNMA RG pools under various conditions. First, we compare speeds on loans in RG pools (black) versus same-age multi-lender pools (red) over the last twelve months. When out of the money, RG pools are 4-5 CPR slower than comparably aged multi-lender pools but provide a significantly flatter S-curve when in-the-money.

Next, we plot the S-curve for all GNMA RG loans with overlays for loans that are serviced by banks (green) and non-banks (blue). Bank-serviced RG loans prepay significantly slower than non-banks by an average of 9 CPR weighted across all incentives. Further, this difference is caused by voluntary prepays, with buyouts averaging a steady 4% CBR, plus or minus 1 CBR, for both banks and non-banks with no discernable difference between the two (second graph).

Finally, we analyzed the loan-level transition matrix by following each RG loan through its various delinquency states over the past year. We note that the transition rate from Current to 30-day delinquent for RG loans is 1.6%, only marginally worse than that of the entire universe of GNMA loans at 1.1%. RG loans transitioned back from 30->Current at similar rates to the wider Ginnie universe (32.3%) and the 30->60 transition rate for RG loans was marginally worse than the Ginnie universe, 30.8% versus  24.0%.[2]

Monthly Transition Rates for Loans in GNMA RG Pools: In summary, loans in RG pools have shown a substantial level of voluntary prepayments and comparatively low buyouts, somewhat unexpected especially in light of their recent delinquency. Further, their overall transition rates to higher delinquency states, while greater than the GNMA universe, is markedly better than that of reperforming loans just prior to the outbreak of COVID.

SCHEDULE A DEMO


Incorporating Climate Risk into ERM: A Mortgage Risk Manager’s Guide

Climate risk is becoming impossible to ignore in the mortgage space.

President Biden’s May 2021 Executive Order makes clear that quantifying and mitigating climate risk will be a priority for the federal government’s housing finance agencies (HUD, FHFA, FHA, VA). It’s just a matter of time before the increased emphasis on this risk makes its way to others in the eco-system (Government-Sponsored Enterprises, Servicers, Lenders, Investors). The SEC will be coming out with climate-related requirements for the securities markets. In early 2021, a proposed rule amendment “to enhance registrant disclosures regarding issuers’ climate-related risks and opportunities” was added to their regulatory agenda with an expected release in 2022. Other agencies, including the OCC, are issuing draft guidance, or requesting feedback on climate-related risks.  Boards are taking notice, and, if you haven’t heard from yours on the topic, you will soon.

But where can you start?

Bear in mind there are a couple of critical questions you need to think about regarding your organizational response to climate risk. Most executives and boards are now familiar with the concepts of physical and transition risks of climate change, but how will these risks manifest in your organization through business, asset, regulatory, legal, and reputation risk? How will these risks impact residential housing prices, attractiveness of communities, building codes, insurance costs, and zoning laws, and the valuation of mortgages and other financial instruments that are a derivative value of residential properties and the economic strength of communities? What will be the response from homeowners, insurers, builders, investors, and public policy of local, state, and federal governments that could impact asset valuation? It’s not an easy problem to solve!

A growing body of academic literature has developed around home price dynamics, mortgage performance, and the general perception of climate risk as a market influencer. Published findings focus primarily on the effect of physical risks on mortgage performance and home prices. A recurring theme in the literature is that while individual climate events can be highly disruptive on local real estate and mortgage markets, values tend to rebound quickly (Bin and Landry, 2013) with the specter of another such event not appearing to weigh down prices significantly. On top of that, short-run effects of supply issues and competitive effects, such as attractive housing features and locations, complicate housing price dynamics. People still want to live on coasts and rivers, in hot and dry desert locations, and in earthquake- and wildfire-exposed areas that are prone to natural catastrophes and increasing impacts from climate change. So attractive are these areas, the marginal effect of a home being in an area that is projected to be underwater may actually increase home prices, without controlling for distance to the shore. This may be a consequence of the premium value associated with waterfront views (Baldauf et al., 2020). But just because impacts so far have been minimal, does not mean future impacts will follow the same trend.

While prices have rebounded quickly after events in the past and housing prices still command a premium for waterfront views, there is evidence that buyers are starting to discount values for coastal properties exposed to sea level rise (Bernstein et al. 2018).  In the future, where there is increasing chances that climate change will cause permanent change to usable land due to any number of hazards without effective resilience improvements, there may be a smaller or no rebound in prices leaving the holders of exposed real and financial assets with a loss. Or, conversely, the value of waterfront homes may even begin to experience a rapid decline if mortgage holders begin to suspect that the value (and usability) of their properties could decline substantially over the life of their mortgages.

Further discussion of the academic literature and a bibliography can be found in the note at the end of this article.

Significant uncertainty exists about how climate change will occur, over what timeframe these changes will occur, how all levels of government will intervene or react to chronic risks like sea level rise, and how households, companies, and financial markets will respond to various signals that will create movements in prices, demographics, and economic activity even before climate risk manifests. What is known is that global temperatures will continue to warm over the next 50 years regardless of the actions people and governments take, and the impacts of that warming will accumulate and become more severe and frequent over time, requiring a definitive action plan for dealing with this issue.


Little differentiation in scenarios in 20 years. Risks will manifest differently over different timeframes.


 

The standards by which organizations will be expected to deal with climate risk will evolve as the climate continues to change and more capabilities are developed to address these issues. An important first step is the need to contextualize these risks with respect to other risks to your business. One immediate need is to address near-term board and regulatory reporting requirements, as well as voluntary public disclosure, as pressure by stakeholders to understand what actions are being taken by companies to address climate change builds.

There is no easy answer, but we offer a way to bring the issue into focus and plan for a thoughtful response as the risks and standards evolve. We are tackling the problem by understanding the risks the organization faces and evaluate those through scenarios and sensitivity analysis. We recommend against over-engineering a solution; instead, design a framework that allows you to monitor and track risk over time. We propose a practical approach, one that’s incrementally phased and integrates risk management through time, enabling pause, adjustment, assessment, and changes in course as needed.


Suggested Approach for Incorporating Climate Risk into ERM


We present five key components to consider when incorporating a climate and natural hazard risk dimension into an existing ERM framework.

Evaluate the Risk Landscape

As a starting point, evaluating the risk landscape entails identifying which climate-related risks have the potential to affect investment return. Climate-related financial risks can be categorized into physical and transition risks.

Physical risks can be acute or chronic. Acute physical risks include extreme events like hurricane, floods, and wildfire. Chronic physical risks refer to a property’s exposure to sea level rise, excessive heat, or drought, for example. Investors who understand these terms and scenarios – including how uncertainty is modeled, emphasizing the directional relationship and order of magnitude of changes rather than exact quantification — are at a competitive advantage.

Transition risks and the secondary effects of physical risks can arise from changes in policy, legal, technology, or market actions that come about from a movement to reduce carbon emissions.

Some important and guiding questions for both physical and transition risk include:

What are the acute and chronic physical hazard types that pose a financial risk?

How will these risks manifest as potential financial loss to mortgage investments?

How material are the possible losses?

How might these risks evolve over time?

Note that climate science continues to evolve, especially as it relates to longer-term impacts, and there is limited historical data to understand how the effects of climate change will trickle into the housing market. Risk assessments must be based on a range of scenarios and include plausible narratives that are not bound by historical observations. The scenario approach applies to studying both acute and chronic physical risks, and the scenarios used in assessing acute or chronic risks may be conceptualized differently.

Select Climate-Related Risks that Impact Mortgage Finance

Visualizing the exposure of various mortgage stakeholders to different forms of climate risk can be accomplished using a table like the following.


Figure


Establish Risk Measurement Approach

Quantifying the financial impact of physical and transition risk is critical to evaluating a portfolio’s potential exposure. From a mortgage loan perspective, loan-level and portfolio-level analyses provide both standalone and marginal views of risk.

Translating hazard risk into a view of financial loss on a mortgage instrument can be accomplished within traditional mortgage model estimations using 1) a combination of property-specific damage estimates from natural hazard and climate risk models, and 2) formulated macroeconomic scenarios guided by academic research and regulatory impacts. And because chronic effects can affect how acute risks manifest, a more nuanced view of how acute risks and chronic risks relate to one another is necessary to answer questions about financial risk.

Mortgage investors can better understand natural hazard risk measures by taking a page from how property insurers account for it. For example, the worst-case “tail loss” potential of a given portfolio is often put in context of the type of events that are at the tail of risk for the industry as a whole – in other words, a 1-in-100-year loss to the portfolio versus a loss to portfolio for a 1-in-100-year industry event. Extending this view to mortgages entails considering the type of events that could occur over the average life of a loan.

To address chronic and transition risk, selecting appropriate macroeconomic scenarios also provides a financial view of the possible impact on a mortgage portfolio. These scenarios may be grounded in published climate projections, asset-specific data collection, or different scenario narratives outlining how these risks could manifest locally.

Defining a Risk Appetite Framework

Inventorying the complete range of potential climate-related risks provides structure and organization around which risks have the largest or most severe impact and creates a framework for ranking them by appropriate criteria. A risk appetite and limit framework defines the type and quantity of natural catastrophe and climate change risk that an enterprise is willing to hold in relation to equity, assets, and other financial exposure measures at a selected probability of occurrence.  The operational usefulness of these frameworks are enhanced when defining the appetite and limits in reference to the risk measures the company selects in addition to straight notional values.

The loss exposure for a particular risk will drive operations differently across business lines based on risk preferences. From the viewpoint of mortgage activities, these operations include origination, servicing, structuring, and pricing. For instance, it may be undesirable to have more than $100 million of asset valuation at risk across the enterprise and apportion that limit to business units based upon the return of the asset in relation to the risk generated from business activity. In this way, the organization has a quantitative way for balancing business goals with risk management goals.

The framework can also target appropriate remediation and hedging strategies in light of the risk priorities. Selecting a remediation strategy requires risk reporting and monitoring across different lines of business and a knowledge of the cost and benefits attributed to physical and transition risks.

Incorporate Findings into Risk Governance

Entities can adapt policies, processes, and responsibilities in the existing ERM framework based on their quantified, prioritized, and articulated risk. This could come in the form of changes to stakeholder reporting from internal management committees, board, and board committees to external financial, investor, public, and regulatory reporting.

Because regulatory requirements and industry best practices are still being formed, it is important to continuously monitor these and ensure that policies align with evolving guidance.

Monitor and Manage Risk Within Risk Appetite and Limits

Implementation of an ERM framework with considerations for natural catastrophe and climate risk may appear different across different lines of businesses and risk management processes. For this reason, it is important that dashboards, reporting frameworks, and exposure control processes be designed to fit in with current reporting within individual lines of businesses.

A practical first step is to establish monitoring specifically to detect adverse selections issues—i.e., ensuring that you are not acquiring a book of business with disproportionately high levels of climate risk or one that adds risk to areas of existing exposure within your portfolio. The object is to manage the portfolio, so risk remains within the agreed appetite and limit framework.  This type of monitoring will become increasingly critical as other market participants start to incorporate climate risk into their own asset screening and pricing decisions. Firms that fail to monitor for climate risk will ultimately be the firms that bear it.

All of this ultimately comes down to identifying natural catastrophe and climate risks, quantifying them through property and loan-specific modeling and scenarios, ranking the risks along different criteria, and tailoring reporting to different operations in the enterprise with an eye for changing regulatory requirements and risk governance policies. An enterprise view is needed given climate risks correlate across multiple asset classes, and where it is determined that differences in risk tolerance are desired, the framework described provides a coherent and quantitative basis for differences.  Successfully negotiating these elements is more easily described than actually carried out, particularly in large financial institutions consisting of businesses with widely divergent risk tolerances.  But we appear to be reaching a point where further deferral is no longer an option. The time to begin planning and implementing these frameworks is now.

GET STARTED

Note on academic research and works referenced

Some empirical research has been conducted examining outcomes following natural hazard events, specifically their impact on mortgage loan performance. Kousky et al. (2020) show evidence that property damage from an extreme event increases short-term mortgage delinquencies and forbearance rates. This effect is mitigated by the presence of flood insurance, which enables borrowers to use insurance proceeds to pay off loans or sell damaged homes once they’ve received compensation and move away from the impacted area. A rebound effect, observed in home prices, occurs in loan performance as well. Delinquencies, while elevated just after the disaster, tend to quickly revert to pre-disaster levels (Fannie Mae, 2017). Extending beyond single-event analysis, delinquencies in hurricane-prone areas have been shown to be higher than delinquency rates in other areas, controlling for other risk factors (Rossi, 2020). The projected rise in hurricane intensity and incidence can therefore lead to higher default risk, which in turn leads to higher losses to investors in mortgage credit risk.

Studies on chronic risks like sea level rise reveal the risk to have a moderate effect on housing prices, stratified by climate “denier” and climate “believer” borrowers (Baldauf et al., 2020). All else equal, areas with owners who perceive a climate threat to their properties may demand a discount on prices. Similarly, Bernstein et al. (2018) show housing price discounts of up to 7% for counties more worried about sea level rise than unworried counties. Risk perception for climate change is subject to a number of biases (Kousky et al., 2020). As such, distortion created by these biases can contribute to inaccurate home pricing. Evidence suggests that regulatory floodplain properties are overvalued, but pricing is inconsistent. Borrowers who are well-informed and sophisticated may fully reflect flood risk information in their pricing (Hino and Burke, 2021). These effects can vary by consumer disclosure requirements as well, which lead to discussion about information gaps on climate risk.

Yet, there is notable research on the salience of events, where house prices following the occurrence of an extreme event have been shown to have persistent effects on home prices. Ortega and Taspinar (2018) show a permanent price decline in the 5 years following Hurricane Sandy for properties in flood zones, regardless of the damage experienced. While properties damaged by the hurricane showed a rebound in home prices right after the event, all properties affected by the storm converged to the same home price penalty. Eichholtz et al. (2019) primarily study commercial real estate properties in New York, with corroborating studies in Boston and Chicago, and find negative price effects from flood-risk exposure post-Hurricane Sandy due to sophisticated investors adjusting their valuations downward. Increased attention to climate change from the occurrence of extreme events may cause long-term price effects as communities begin evaluating the possible risks they face after weathering a catastrophic event.


For further reading, see:

Markus Baldauf, Lorenzo Garlappi, Constantine Yannelis, Does Climate Change Affect Real Estate Prices? Only If You Believe In It, The Review of Financial Studies, Volume 33, Issue 3, March 2020, Pages 1256–1295, https://doi.org/10.1093/rfs/hhz073

Eichholtz, Piet M. A.; Steiner, Eva; Yönder, Erkan “Where, When, and How Do Sophisticated Investors Respond to Flood Risk?,” June 2019. PDF

Bernstein, Asaf and Gustafson, Matthew and Lewis, Ryan, Disaster on the Horizon: The Price Effect of Sea Level Rise (May 4, 2018). Journal of Financial Economics (JFE), Forthcoming, Available at SSRN: https://ssrn.com/abstract=3073842 

Bin, O., & Landry, C. E. (2013). Changes in implicit flood risk premiums: Empirical evidence from the housing market. Journal of Environmental Economics and Management, 65(3), 361–376. HYPERLINK “https://protect-us.mimecast.com/s/SL58C5ylW5F05NOpXUzgQhi?domain=doi.org

Hinoa and Burke, The effect of information about climate risk on
property values (March 18, 2021). PDF

Ortega, Francesc and Taspinar, Suleyman, Rising Sea Levels and Sinking Property Values: The Effects of Hurricane Sandy on New York’s Housing Market (March 29, 2018). Available at SSRN: https://ssrn.com/abstract=3074762 or http://dx.doi.org/10.2139/ssrn.3074762

Clifford Rossi. “Assessing the impact of hurricane frequency and intensity on mortgage default risk,” June 2020. PDF

Markus Baldauf, Lorenzo Garlappi, Constantine Yannelis, Does Climate Change Affect Real Estate Prices? Only If You Believe In It, The Review of Financial Studies, Volume 33, Issue 3, March 2020, Pages 1256–1295, https://doi.org/10.1093/rfs/hhz073

Carolyn Kousky, Howard Kunreuther, Michael LaCour-Little & Susan Wachter (2020) Flood Risk and the U.S. Housing Market, Journal of Housing Research, 29:sup1, S3-S24, DOI: 10.1080/10527001.2020.1836915

Carolyn Kousky, Mark Palim & Ying Pan (2020) Flood Damage and Mortgage Credit Risk: A Case Study of Hurricane Harvey, Journal of Housing Research, 29:sup1, S86-S120, DOI: 10.1080/10527001.2020.1840131

Verisk 2021: How Current Market Conditions Could Impact U.S. Hurricane Season 2021

RiskSpan 2018: Houston Strong: Communities Recover from Hurricanes. Do Mortgages?


Get Started
Get A Demo

Linkedin    Twitter    Facebook